GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Abstract

Context and purpose of the study ‐ Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others. These are highly dependent on the weather conditions during the growing season and management strategies. Therefore, it is important to develop predictive models using machine learning (ML) algorithms to assess and predict wine quality traits before the winemaking process.

Material and methods ‐ Samples in duplicates of Pinot Noir wines from vertical vintages (2008 to 2013) of the same winery located in Macedon Ranges, Victoria, Australia were used to assess different chemical analytics such as i) aromas using gas chromatography – mass spectrometry, ii) color density, iii) color hue, iv) degree of red pigmentation, v) total red pigments, vi) total phenolics, vii) pH, viii) total acidity (TA), and ix) alcohol content. Data from weather conditions from the specific vintages were obtained both from the bureau of meteorology (BoM) and the Australian Wine Availability Project (AWAP) climate databases. Such data consisted of: i) solar exposure from veraison to harvest (V‐H), ii) solar exposure from September to harvest (S‐H), iii) maximum January solar exposure, iv) degree days from S‐H, v) maximum January evaporation, vi) mean maximum temperature from veraison to harvest, vii) mean minimum temperature from V‐H, viii) water balance from S‐H, ix) solar exposure from V‐H, x) degree hour accumulation with base 25 – 30 °C, xi) degree hour accumulation with base 25 °C, xii) degree hour accumulation with base 30 °C, xiii) degree hour accumulation with base 35 °C, and xiv) total cumulative degree days accumulation with base 10 °C. All data were used to develop two machine learning (ML) regression models using Matlab® R2018b. The best models obtained were using artificial neural networks (ANN) with the Levenberg‐Marquardt algorithm with 5 neurons for Model 1 and 9 neurons for Model 2. Model 1 was developed using the 14 parameters from the weather data as inputs to predict 21 aromas found in the wines from the six different vinatges. Model 2 was developed using the same 14 parameters from weather data and the eight chemical parameters as targets and outputs.

Results ‐ Both models obtained presented very high accuracy to predict wine quality trait parameters. Model 1 had an overall correlation coefficient R = 0.99 with a high performance based on the mean squared error (MSE = 0.01), while Model 2 had an overall correlation coefficient R = 0.98 with a high performance (MSE = 0.03). These models would aid in the prediction of wine quality traits before its production, which would give anticipated information to winemakers about the product they would obtain to make early decisions on wine style variations.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Sigfredo FUENTES, Claudia GONZALEZ VIEJO, Xiaoyi WANG, Damir D. TORRICO

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia

Contact the author

Keywords

wine quality, machine learning, weather, aromas

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.