Macrowine 2021
IVES 9 IVES Conference Series 9 Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Abstract

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized. Indeed, previous studies show a great efficiency for low absorbing liquids, but a poor one for high absorbing liquids, due to the lack of UV penetration. For this purpose, coiled tube UV-C reactor has been used in this study. The main component of this reactor is a FEP tube, helically wound around the UV lamp quartz sleeve. Dean vortices (radial flows) generated in this coiled tube reduce the UV dose (in J/L) required, ensuring a homogeneous dose distribution in absorbing liquids. UV-C dose was evaluated by actinometric measurments using iodide/iodate actinometry, allowing us to select the most suitable flow rate. The inactivation performance of this process on multiple strains (S.cerevisiae, D.bruxellensis diploid and triploid, and O.oeni) and the impact of UV-C treatment on sensorial, physicochemical proprieties and chemical compounds like thiols, were investigated on white and rosé wine. The entire continuous process has been evaluated in lab and semi-industrial scale at 2 hL/h. UV-C doses required to achieve a 6 log10 microbial reduction are low (less than 600J/L) in white and rosé wine. Sensorial and physicochemical analyses, after treatment and after three months, didn’t show differences between treated and untreated wines. Chemicals compounds quantification and sensorial analyses on red wine are currently in progress.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rémy Junqua*, Cécile Thibon, Emmanuel Vinsonneau, Marta Avramova, Martine Mietton-Peuchot, Pons Alexandre, Remy Ghidossi

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.