Macrowine 2021
IVES 9 IVES Conference Series 9 Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Abstract

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts. In contrast to the advantages of GSH, other researchers found that GSH can foster the formation of H2S and other sulfide off-flavors during fermentation. Even during bottle aging, reductive odors may occur as a late consequence of high GSH levels during winemaking. In order to examine the impact of GSH on the formation of sulfide off-flavors, colour, and sensory characteristics, Riesling, Sauvignon blanc, and Chardonnay grapes were processed under different conditions to obtain musts with high and low phenolic content. Based on the original GSH concentration the HGR was adjusted using GSH or GSH-enriched IDY. The resulting wines were either racked off the lees or submitted to sur lie aging for 4 months. As already observed by others, GSH additions increased the GRP concentration in must and preserved their green color. At the same time, these musts tended to form higher concentrations of H2S, methyl and ethyl mercaptan during fermentation suggesting that excessive GSH is responsible for the production of volatile mercaptan metabolites. Normally, these compounds were degraded at the end of fermentation and dropped below sensory threshold as soon as the wines were racked off the gross lees. However, the decrease in mercaptan content, partly explained by the oxidative formation of disulfides, was strongly impaired when o-diphenols were low in concentration (e.g. in free run juice) or when musts were treated with ascorbic acid and SO2. This observation suggests that an effective mercaptan deodorization in young wines depends on the oxidizability of o-diphenols. Bottled wines were generally lower in GSH than musts. However, elevated levels of GSH could be determined after sur lie aging, possibly explaining the protection against oxidation in this aging regime. Sensory analysis after bottling revealed that the fruity odor of Riesling and Sauvignon blanc wines was enhanced when GSH was added to must in moderate concentrations. Excessive GSH, especially in musts with a low phenolic content (e.g. from whole-cluster pressing), could lead to sensorially noticeable sulfide off-flavor in the later wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Dominik Durner*, Hans-Georg Schmarr, Pascal Wegmann-Herr, Sebastian Ullrich, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T