GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Abstract

Context and purpose of the study ‐ Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation. The scarcity of information implies the need to know the plant water status to make an estimate of the response of cv. Verdejo to the variation of water regime in vineyard cultivation.

Material and methods ‐ Throughout the 2016, 2017 and 2018 seasons, the vine water status was studied through the measurement of leaf and xylem water potential, at different times of the day, as response to the application of three treatments of water regime: rainfed (R0), irrigation of 30% ETo from beginning of veraison (R1) and irrigation of 30% ETo from pea size (R2), in both cases until harvest. The trial was developed with vines of cv. Verdejo, on 110R, planted in 2006 and vertically trellised trained, in the D.O. Rueda (Spain).

Results ‐ The various types of measurement of water potential showed significantly less negative values in the irrigated vines (R2) than in the non‐irrigated ones (R0 and R1) until veraison, with more or less delay, compared to the start of irrigation in R2, depending on the year and on the measurement time. The measurement of xylem water potential, at 12 hs, showed a slight delay in the appreciation of the significant differences favorable to R2. In contrast, the measure at 7 hs in leaves on the shaded side showed greater immediacy in the favorable discrimination to R2 the driest year, 2017. The wettest year, 2018, none of the potential measurement types was able to show significant differences between treatments throughout the entire period in which only the R2 treatment was irrigated. From the beginning of the application of irrigation in treatment R1, at the beginning of the veraison, the various measurements of water potential showed significant differences favorable to the irrigated treatments (R2 and R1) with respect to the rainfed one (R0), with values slightly less negative of R2 than of R1, at all hours of measurement. However, in the wettest year, 2018, the appearance of these significant differences was delayed in the various types of measurement, but more accentuated in the measure of xylem potential, at 12 hs, and in the 9 hs in leaves of the sunny side, while at 12 hs in leaves of the sunny side it was not registered. The measurement of water potential at 7 hs in shaded leaves was slightly more sensitive to the variation of the water regime, besides being more comfortable to execute, than at 9 and 12 hs in leaves to the sun and, in particular, than that of xylem potential, at 12 hs, which also requires the pre‐bagging of the measuring leaf. Therefore, the measurement of water potential at 7 hs in leaves on the shaded side is interesting as a practical indicator of the water status of the vineyard.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jesus YUSTE (1), Daniel MARTINEZ‐PORRO (1)

(1) Instituto tecnologico agrario de castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Leaf, Pressure chamber, Shade, Sunlight, Xylem

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Complantations : enjeux et facteurs de réussite

Dans le cadre de TerclimPro 2025, Coralie Dewasme a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8486

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

The Hungarian system of geographical indications and the preparation of product specifications

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications.