terclim by ICS banner
IVES 9 IVES Conference Series 9 Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Abstract

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

NDVI results showed a higher biomass development for R2 which in general agreed with higher R2 production at harvest as well as a trend to a higher renewable wood weight at pruning time. Due to it, nutrient content in petioles showed, in general, the higher limitation in R2 with respect to Mg uptake and, in a lesser extent, K uptake, which were also reflected in the Ca/Mg and Mg/K ratios in petiole. Furthermore, the higher Ca and P concentrations in petiole observed for R2 throughout the season suggests their sufficiency and higher availability in R2 soils with respect to the dryer conditions of R0 soils. Finally, the higher Carbon concentration in petiole of R0 also showed the higher limitation of R0 for nutrient availability and later uptake with respect to R2.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ignacio Martín1*, Luis Rivacoba1, Alicia Pou1, Diego López, Sergio Ibáñez1, Javier Portu1, Elisa Baroja1, Juana Martínez1, Natalia Domínguez, Enrique García-Escudero1

1 Instituto de Ciencias de la Vid y del Vino (ICVV). Finca La Grajera, Ctra. De Burgos km. 6 (LO-20-salida 13), 26007, Logroño (La Rioja), SPAIN

Contact the author*

Keywords

water stress, limited irrigation, nutrient uptake, reflectance, nutrient availability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies.

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.