terclim by ICS banner
IVES 9 IVES Conference Series 9 The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

Abstract

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed that the harvest date of two adjacent vineyards (within 200 m) could vary up to two weeks. High vineyard pH (> 8.5) could accelerate grape ripening rate, increase grape anthocyanin and flavonol concentration while decreasing C6/C9-related aromas. Vineyards with moderate nutrition were beneficial for accumulating norisoprenoids in grapes. Differently expressed genes involved in the pathways of secondary metabolites were selected through transcriptome analysis, revealing the regulation of grape flavor compounds influenced by vineyard soil heterogeneity. This work provides molecular and chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Haocheng Lu1,2, Mengbo Tian1,2, Ning Shi1,2, Jun Wang1,2*

1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Contact the author*

Keywords

Single vineyard wine, soil, phenolics, aromas, transcriptome

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

NMR profiling of grape musts from some italian regions

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent.

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region