terclim by ICS banner
IVES 9 IVES Conference Series 9 Ugni blanc berry and wine composition impacted by thirteen rootstocks

Ugni blanc berry and wine composition impacted by thirteen rootstocks

Abstract

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks x 5 scions x 3 blocks) on cv. Ugni blanc (Marguerit et al. 2019). The effects of thirteen selected rootstocks were evaluated on various viticultural parameters as well as berry composition including detailed amino acid profiles at harvest and fermentative volatile contents of the corresponding wines, fermented under standardized conditions similar to Cognac base wine elaboration.

Among all the parameters measured, rootstock effects outweighed block effects, with significant variations in vigor observed. In 2021, low to no water deficit conditions were found. Significant differences between sugar and nitrogen compound levels in the must were observed between rootstocks with low sugar levels, typical for Cognac base wine production. Differences in amino acid concentrations and proportions were substantial leading to wine with distinct aroma profiles with 333EM and Evex13-5 having the highest concentration of higher alcohol acetate (> 3 mg/L) while RSB and Gravesac had the lowest (~ 2.8 mg/L). Although the connection between vine characteristics and wine volatiles was not apparent, aroma composition appeared linked to must composition, necessitating further investigation.

Acknowledgements: The authors would like to thank the Experimental Viticultural Unit of Bordeaux 1442, INRAE, F- 33883 Villenave d’Ornon, for its contribution with the setting up of the GreffAdapt experimental vineyard.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Julia Gouot1,2,3*, Laura Farris1,2, Marine Morel4, Nicolas Le Menn1,2, Xavier Poitou3, Mathilde Boisseau3, Elisa Marguerit4, Jean-Christophe Barbe1,2

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3R&D Department, JAS Hennessy & Co, Cognac, France
4EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Amino acids, Aroma compounds, Ugni blanc, Rootstock, Yield

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

An innovative 21st century frost alert system for an age-old viticulture challenge

Damage during the budbreak period due to spring season frosts remains one of the most significant weather-related challenges to viticulture around the world. For example, in 2021, €2bn of estimated damage was reported in france while >50% of vineyards were badly affected in the UK in 2017.