terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

Abstract

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress. The tool will be integrated within VitViz and Grapedia, two web portals that provide access to genomic data of grapevine. The tool allows us to compare the expression of all grapevine genes, using the V3 genome of ‘PN40024’ as a reference. With this app, we discovered a couple of genes that could boost the drought tolerance of grapevines by cis/trans-genesis (such as the raffinose synthase and AQUILO) or by genome editing (GRETCHEN HAGEN gene). We applied these two methods to different rootstocks and cultivars of grapevines.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2,Antonio Santiago Pajuelo2, Maria Stella Grando4, Felipe Gainza-Cortés3, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000 , Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy

Contact the author*

Keywords

Transcriptome, Abiotic stress, Drought, Rna-seq, Bioinformatics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies.

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).