terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

Abstract

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress. The tool will be integrated within VitViz and Grapedia, two web portals that provide access to genomic data of grapevine. The tool allows us to compare the expression of all grapevine genes, using the V3 genome of ‘PN40024’ as a reference. With this app, we discovered a couple of genes that could boost the drought tolerance of grapevines by cis/trans-genesis (such as the raffinose synthase and AQUILO) or by genome editing (GRETCHEN HAGEN gene). We applied these two methods to different rootstocks and cultivars of grapevines.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2,Antonio Santiago Pajuelo2, Maria Stella Grando4, Felipe Gainza-Cortés3, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000 , Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy

Contact the author*

Keywords

Transcriptome, Abiotic stress, Drought, Rna-seq, Bioinformatics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

Pedoclimatic comparison of three viticultural areas of Italy devoted to high-quality Aglianico and Cabernet Sauvignon production

Aim: The study aims to show how different pedo-climatic conditions (past, present, and future) in three Italian sites at different latitudes (from center to southern), affect the adaptation of two red grapevine cultivars: Aglianico and Cabernet Sauvignon.

Early likovrisi: the new white very early table grape seedless and resistant variety

This paper presents is the create, the study and ampelographic description the new «Early Likovrisi», that was created (2014) in Greece by Pantelis Zamanidis.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.