terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 The adaptation and resilience of scions and rootstocks to water constraint

The adaptation and resilience of scions and rootstocks to water constraint

Abstract

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted. Sampling occurred twice in a season, firstly when no water constraint was evident yet (in that season), or after a period of confirmed water stress. For the epigenetic analyses, an initial baseline methylation analysis was performed, indicating that the %methylation drops towards the second time point (as water constraint developed). A more detailed analysis followed to also test for developmental patterns and to identify target plants for a deeper epigenetic analysis. The soil microbial community analysis showed that the rootstock-scion combinations significantly influenced fungal communities in terms of the level of diversity and community composition and structure, while sampling time points contributed significantly to differences in the bacterial community diversity. Clear alterations were observed in the vineyard microbiome with increasing water constraints. The combined data provides insight into the adaptability of grapevines and confirms the value of long-term experimentation and a high level of characterisation of complex field phenotyping sites in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Melané A Vivier*, Riyana Diljee, Nomfundo Shange, Anscha Zietsman, Reinhard Swart, Talitha Venter, Carlos Poblete-Echeverria, Philip R Young, Mathabatha Evodia Setati

South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

Scion, Rootstock, Water stress, Epigenetics; Grapevine Microbiome

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Classification of the wine-growing environment of Central Mancha (Spain). First works

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria.

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.