terclim by ICS banner
IVES 9 IVES Conference Series 9 Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Abstract

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform. To assess traits related to carbon and water functioning on the whole panel, we deployed an original approach where 120 leaves of 40 genotypes were phenotyped combining low-throughput devices to precisely measure ecophysiological traits, as well as innovative, portable high-throughput devices to measure near infrared reflectance, porometry and chlorophyll fluorescence. These data allowed us to build cutting-edge statistical models, such as multiblock models, which jointly use data from different devices, for predicting ecophysiological traits. Models for predicting photosynthesis and transpiration were accurate enough to be applied on the entire panel, only measured with high-throughput devices. Such predictions highlighted a wide range of genotypic variability and contrasting responses to water deficit. Multi-traits and Multi-Environment Genome Wide Association Studies further revealed genomic regions associated with these responses, and underlying candidate genes are being investigated. 

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Eva Coindre1,2*, Laurine Chir2, Maxime Ryckewaert3, Romain Boulord2, Mélyne Falcon2, Thomas Laisné2, Gaëlle Rolland2, Maëlle Lis2, Llorenç Cabrera-Bosquet2, Agnès Doligez1, Thierry Simonneau2, Benoît Pallas2, Aude Coupel-Ledru2, Vincent Segura1,4

1 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
2 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
3 Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 UMT Geno-Vigne, IFV, INRAE, Montpellier, France

Contact the author*

Keywords

water deficit, high throughput phenotyping, prediction, photosynthesis/transpiration coupling, GWAS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.