terclim by ICS banner
IVES 9 IVES Conference Series 9 Raffinose: a sweet solution for grapevine drought tolerance

Raffinose: a sweet solution for grapevine drought tolerance

Abstract

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family. We analyzed the transcriptome data of these cultivars and constructed a gene co-expression network based on the reference genome, which revealed the involvement of the MYB transcription factor named ‘AQUILO’. To test the function of VviRAF2 and ‘AQUILO’ in water-stress tolerance, we engineered such genes via Agrobacterium tumefaciens using both, transgenic and cisgenic approach: one VviRAF2 under the control of the 35-s promoter, and another with the insertion of AQUILO controlled by its own promoter. During this study, we performed gene expression experiments on transformed lines to compare the DEGs in response to water-stress. Finally, we present the preliminary results related to stress response underlying the pathways of water stress tolerance.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2, David Navarro-Paya2,Felipe Gainza-Cortés3, Maria Stella Grando4, Olivier Zekri5, Pierre Videau5, Katerina Labonova5, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000, Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E Mach 1, 38010 San Michele all’Adige, Italy
5 Mercier Novatech, Le Champ des Noëls, 85770 – Le gué de velluire, France

Contact the author*

Keywords

Raffinose, Metabolites, Drought, Abiotic stress, sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Key genes in rotundone biosynthesis are affected by temperature, light, water supply, and nitrogen uptake

Rotundone accumulation and biosynthesis is a complicated process. Previous research highlighted that these phenomenons were affected under ecophysiological conditions by viticultural practices (e.g. defoliation or irrigation). Individually, these practices often impact several abiotic factors that are difficult to separate such as temperature, water or nitrogen status, or radiation. Such dissociation can be achieved under controlled environmental conditions using potted vines.

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.