terclim by ICS banner
IVES 9 IVES Conference Series 9 Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Abstract

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS. Vcmax, tightly linked with Rubisco, an important N2 sink in leaves, was strongly reduced after water deficit in both varieties, even though the total leaf N2 at harvest was only reduced in CS under deficit. The yeast assimilable nitrogen in berries, on the other hand, was not affected at harvest, but only after the water deficit was imposed in CS, mainly accountable for ammonium, not primary amino acids. Yet, arginine, the most abundant amino acid in CH was affected by water deficit. N2 allocation to berries is highly favoured, despite the reduced capacity for N2 uptake as inferred from the reduced transcript abundance for N2 transporters in active roots. Further discussion will be made based on N2 transporters in plant parts.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Claudio Pastenes1*, Andrea Ávila-Valdés1, Álvaro Peña-Neira1, Carlos Pérez1, Benjamín Rosales1, Marco Garrido1, Reinaldo Campos1, Carol Leiva1, José Ignacio Covarrubias1

1 Affliliation 1 Universidad de Chile, Facultad de Ciencias Agronómicas

Contact the author*

Keywords

nitrogen intake, nitrogen transporters, photosynthesis, water deficit, YAN

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.

‘It’s a small, yappy dog’: The British idea of terroir

Aims: Most consumer research about terroir has focused on wine, particularly with French or other European wine drinkers, rather than those in the Anglo-Saxon world. In Europe, whilst there is no agreement amongst consumers as to what terroir actually is, there is a general recognition of the word and an acceptance that it represents something important

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.