terclim by ICS banner
IVES 9 IVES Conference Series 9 Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Abstract

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydosporaPhaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines. Here, we conducted metabolic profiling and untargeted/ targeted metabolomics to gather more insights into the molecular and biochemical mechanisms responsible for the onset of symptoms. Ultra-High Performance Liquid Chromatography (UHPLC-qTOF-MS/MS), Gas Chromatograph-Quadrupole Time of Flight Mass Spectrometry (GC-qTOF-MS/MS), and Liquid Cromatography (LC-MS/MS) enabled the identification of putative markers of symptomatology regarding hormonal regulation, primary and secondary metabolisms. Abscisic acid, jasmonates, and specific amino acids and sugars decrease in harvest-stage fruits from symptomatic grapevines, in contrast with the accumulation of a wide variety of phenylpropanoids (e.g., procyanidin B1, caftaric acid, resveratrol) among others. Secondary metabolism was more strongly remodelled indicating a partitioning of carbon allocated to defence-related metabolism. RNA extraction and sequencing are being conducted to integrate these metabolic results with molecular data. This study may contribute to developing a model regarding the development of Esca symptoms in an attempt to mitigate the worldwide impact of this complex disease.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Rute Amaro1*, Rita Pacheco2,3, Carla António4, Cecília Rego5, Lisete Sousa6, Paula Lopes1,7, Axel Mithöfer8, Ana Margarida Fortes1

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
2 Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
3 Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4 Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
5 LEAF – Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
6 Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
7 DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Vila Real, Portugal
8 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

Contact the author*

Keywords

Esca disease, Hormonal profiling, Primary metabolism, Phenylpropanoid pathways, RNA sequencing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

Rapid quantification of higher alcohols in wine, port wine and brandy by HS-GC-FID

In response to the growing demand for rapid, precise, and efficient methods of quantifying volatile compounds in alcoholic beverages, this study presents a novel approach for the determination of higher alcohols in wine, port wine, and brandy.