terclim by ICS banner
IVES 9 IVES Conference Series 9 Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil. Our work was carried out in the GreffAdapt plot, a unique experimental vineyard, including 55 rootstocks grafted with five different scions. Roots and rhizospheres from ten scion × rootstock combinations were collected in May 2021. Rhizosphere bacteria and fungi were quantified using cultivable approaches and qPCR. The communities of bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere and the roots were analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. Our results highlight that both rootstock and scion genotypes influence the community structure in the rhizosphere and root compartments. The metabarcoding approach shows dissimilarities among bacterial and fungal communities depending on the rootstock or the scion genotype, suggesting that the two partners influence the microbial composition of the rhizosphere and the roots, as well as the putative functions of the microbiome (inferred using Picrust2 and FUNGuild). Finally, the roles of the microbiome in plant development and adaptation will be discussed by correlating its composition with plant phenotypic traits, as well as nutrient content of petioles and roots.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Vincent Lailheugue, Romain Darriaut, Anne Janoueix, Marine Morel, Joseph Tran, Elisa Marguerit, Virginie Lauvergeat*

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, root system, metabarcoding, PICRUSt2, FUNGuild

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.