terclim by ICS banner
IVES 9 IVES Conference Series 9 Development and application of CRISPR/Cas in grapevine

Development and application of CRISPR/Cas in grapevine

Abstract

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years.  Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine. Optimization of CRISPR/Cas9 system, as well as the other CRISPR/Cas systems including CRISPR/LbCas12a and base editor in grapevine genome editing, is also discussed. In addition, we discuss the challenges and future perspectives for precision genome editing in grapevine, expecting to present a roadmap for the future applications of CRISPR technology in this species.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zhenchang Liang1,2,3*, Chong Ren1,2,3

1 State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
2 Beijing Key Laboratory of Grape Sciences and Enology, Beijing 100093, PR China
3 China National Botanical Garden, Beijing 100093, PR China

Contact the author*

Keywords

grapevine, genome editing, CRISPR/Cas, challenges, future perspectives

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.