terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

Abstract

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity. Our observations revealed a differential response to the treatments depending on the tested variety. In some varieties, STS treatment enhanced the embryogenic competence of the calluses, while also having a growth-depressing effect on the non-embryogenic calluses. In contrast, the effect of SA was more dose-dependent and varied across different varieties. In some cases, the highest tested concentration of SA had a growth-depressing effect on both embryogenic and non-embryogenic calluses, while in other cases, it only affected embryogenic calluses. Despite these variations, both STS and SA treatments showed promising results in enhancing embryogenic competence, and we are currently evaluating the regeneration of embryos from callus after these treatments and the combined effects of STS and SA. Our study highlights the importance of testing the efficacy of different treatments on multiple grapevine varieties to identify the most effective strategies for NPBT applications.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lucia Rosaria Forleo1*, Bruna Suriano1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Annalisa Prencipe2, Teodora Basile1, Riccardo Velasco1, Maria Francesca Cardone1, Carlo Bergamini1

1 Council for Agricultural Research and Economics -Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy
2 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy

Contact the author*

Keywords

embryogenic callus, ethylene inhibitor, silver thiosulphate, salicylic acid

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Zonazione del comprensorio soave sulla base delle caratteristiche climatiche, pedologiche e viticole

[English version below]

A tre anni dal suo inizio, nel 1997 si è conclusa la prima fase della ricerca “Caratterizzazione della produzione DOC Soave”. Lo studio ha basato il suo percorso sperimentale su alcuni punti fondamentali tra i quali:
• Recupero di tutte le informazioni storico-colturali sul vino Soave e sul suo territorio di produzione.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.