terclim by ICS banner
IVES 9 IVES Conference Series 9 Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Abstract

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited. Such characterizations hold the potential not only as a critical tool for directed breeding, including the identification of molecular markers for genetic selection, but would also enable the functional characterization of genes that may exert influence over key functional traits. This project aims to comprehensively analyze global genetic variation in grapevine cultivars, emphasizing the development of methodologies for large-scale prediction of the impact of genomic sequence variations on protein structure and function. To this end, a curated bioinformatics pipeline was designed to enable the detection of sequence variation present within the coding regions of previously reported Vitis Whole-Genome Sequencing (WGS) datasets. Validation of this pipeline included utilizing genomic regions with known Insertions and Deletions (InDels) and Single Nucleotide Polymorphisms (SNPs) to quantify its efficiency. Lastly, comparative analyses and recording of coding region sequence variation among grapevine cultivars were conducted to facilitate future predictions regarding the impact of genetic variations on protein structure and function.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dylan Grobler1*, Justin Lashbrooke1, Pablo Carbonell-Bejerano2

1 Department of Genetics, Stellenbosch University. (7600) Stellenbosch, South Africa
2 Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC – Universidad de La Rioja – Gobierno de La Rioja. (26007) La Rioja, Logroño, Spain

Contact the author*

Keywords

grapevine, genetic resources, genetic variation, protein prediction

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.

La zonazione in due zone viticole dell’emilia Romagna

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement.

Impacts of climate change on cv. Glera buds’ fruitfulness – 18 years of monitoring in the Conegliano-Valdobbiadene area, Italy

Context and purpose of the study. The vine is generally a very fertile plant when compared to other tree species.

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.