terclim by ICS banner
IVES 9 IVES Conference Series 9 Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Abstract

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk. However, the prediction of primary infections is still a considerable challenge. A prior investigation revealed that the duration required for oospores to germinate (t) decreases as grapevines become susceptible to P. viticola. This study aimed to integrate oospore germination data with insights from the EPI forecasting model in ten vineyards located in Franciacorta, an important Italian viticultural area. The research was performed from grapevine sprouting (April) until bunch closure (July), over three consecutive years (2021-2023). Disease incidence and severity were assessed in untreated plots. Results indicated a simultaneous reduction in t corresponding to the infection risk signaled by the EPI model. A posteriori assessment highlighted the usefulness of biological data in defining the primary infection timing and the accuracy of the model in predicting the disease epidemics. In conclusion, the adoption of the EPI model integrated with the oospore germination assays significantly contributed to formulating a rational treatment strategy.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giuliana Maddalena, Beatrice Lecchi*, Silvia Laura Toffolatti

Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano

Contact the author*

Keywords

downy mildew, forecasting model, oospore germination, disease management, infection risk

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.