terclim by ICS banner
IVES 9 IVES Conference Series 9 Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Abstract

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk. However, the prediction of primary infections is still a considerable challenge. A prior investigation revealed that the duration required for oospores to germinate (t) decreases as grapevines become susceptible to P. viticola. This study aimed to integrate oospore germination data with insights from the EPI forecasting model in ten vineyards located in Franciacorta, an important Italian viticultural area. The research was performed from grapevine sprouting (April) until bunch closure (July), over three consecutive years (2021-2023). Disease incidence and severity were assessed in untreated plots. Results indicated a simultaneous reduction in t corresponding to the infection risk signaled by the EPI model. A posteriori assessment highlighted the usefulness of biological data in defining the primary infection timing and the accuracy of the model in predicting the disease epidemics. In conclusion, the adoption of the EPI model integrated with the oospore germination assays significantly contributed to formulating a rational treatment strategy.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giuliana Maddalena, Beatrice Lecchi*, Silvia Laura Toffolatti

Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano

Contact the author*

Keywords

downy mildew, forecasting model, oospore germination, disease management, infection risk

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].