IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Abstract

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A batch of 28 wines of Romanian varieties obtained in two regions well known for the production of wines from Romania (Dealu Mare and Cotnari) was analyzed from a physical-chemical point of view in order to discriminate them according to geographical origin and variety. The assessment of the carbon isotope ratio in ethanol extracted from wine provides relevant information to validate the geographical origin of wines. At the same time, the phenolic compounds in wine composition are of great importance, they contribute to the formation of characteristics such as taste, color and structure. The profile of these compounds is very different depending on grape variety, climatic conditions in each area and the applied wine-making technology. Therefore, a correlation between the carbon isotope ratio and the phenolic compounds profile can provide an overview of wines of a certain variety or region. Thus, the carbon isotope ratio (δ13C) was determined for all wines in this batch, which varied between -27.13 and -25.83 for wines from the Dealu Mare region and between -28.27 and -25.66 for wines from the Cotnari region. Also 12 phenolic compounds (gallic acid, protocathecic acid, caftaric acid, caffeic acid, coumaric acid, trans resveratrol, hydroxytyrosol, tyrosol, procyanidin dimer B1 and procyanidin dimer B2, catechin and epicatechin) were identified and quantified.
The δ13C measurements have been performed using an elemental analyser VarioMicroCube, Elementar coupled to an isotope ratio monitoring by mass spectrometry (Isoprime, Elementar) while the phenolic compounds content was analyzed by high-performance liquid chromatography (HPLC-PDA). In order to differentiate the wine samples according to the geographical region and the variety, statistical analysis was applied and thus a good discrimination of the wines according to the region and at the same time of the varieties within the same region was achieved.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cotea Valeriu1, Popirda Andreea1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Focea Elena Cornelia1, Nicola Sebastien2 and Noret Laurence2

1Iasi University of Life Sciences, Faculty of Horticulture, Department of Horticultural Technologies, 3rd M. Sadoveanu Alley, 700490 Iasi, Romania
2Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author

Keywords

wine, geographical origin, δ13C measurements, phenolic compounds analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

The landscape in the development of vineyard regions: an application to the ACO Dão and ACO Bairrada (Central Portugal)

The aim of this paper is to analyse the impact of landscapes in the notoriety and marketing of wines and in tourism promotion, specifically in the case of two centenary Portuguese demarcated regions

Mannoprotein extracts from wine lees: characterization and impact on wine properties

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.