terclim by ICS banner
IVES 9 IVES Conference Series 9 Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Abstract

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content. Equal irrigation was applied to all treatments, at 80% of crop evapotranspiration. Canopy size was measured as fractional cover using UAV-sensed imagery, and yield was mapped spatially with a yield monitor mounted on a harvester. Fractional cover values were larger in vines subjected to partial rootzone drying, while there were no differences between vines receiving conventional irrigation and subsurface irrigation under the vine row. Yield was increased up to 70 % for vines under partial rootzone drying compared to vines receiving conventional drip and under-the-vine subsurface irrigation. A significant increase in water use efficiency was achieved by combining subsurface irrigation and re-locating the drip lines to the interrow spaces, also suggesting treatment-induced modifications to root distribution.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Previtali1*, Jack Mezger1, Mahyar Aboutalebi1, Luis Sanchez1, Nick Dokoozlian1

1 Winegrowing Research, E. & J. Gallo Winery, Modesto, 95354 CA

Contact the author*

Keywords

canopy size, irrigation techniques, partial rootzone drying, remote sensing, subsurface irrigation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Yeast mannoproteins and derivates are polysaccharides produced from the cell walls of different yeast strains widely used in the winemaking and finning of wines to improve their overall stability and sensory properties.

Waste valorization in winery and distillery industry by producing biofertilizers and organic amendments

The winery and distilling spirits industry generate a remarkable amount of by-products and wasted, that are not properly managed, posing socioeconomic problems and environmental risks, due to its seasonal and polluting characteristics.