terclim by ICS banner
IVES 9 IVES Conference Series 9 Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

Abstract

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs. The main objective of this work is to compare new hybrids of table grape (Alicante Bouschet cv. × Itumfifteen cv.) regards to their pulp phenolic compounds content. Three selections of new hybrids Non-Coloured Flesh (NCF) and Total Coloured Flesh (TCF) were analyzed for their individual phenolic compounds (phenolic acids, stilbenes, flavonols, and anthocyanins) during two consecutive seasons 2022 and 2023. The new TCF hybrids showed 2.9-fold higher flavonols in the berry pulp compared to NCF hybrids. Moreover, the anthocyanins content in the berry pulp of TCF grapes reported to be 20-fold higher than those of NCF hybrids. As expected, phenolic acids and stilbenes, were significantly enhanced in TCF hybrids compared to NCF hybrids. The presence of red berry flesh in table grapes not only adds a new characteristic to the market, this new cultivars are genetically enriched in healthy promoting compounds.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pablo Crespo Ródenas1,2*, Lorena Martínez Zamora2,3, Francisco Artés Hernández2, Manuel Tornel Martínez1

1 Table Grape Breeding Group. Department of Biotechnology, Genomics and Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
2 Postharvest and Refrigeration Group. Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, 30203, Spain
3 Department of Food Technology, Food Science, and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain

Contact the author*

Keywords

Vitis vinifera, teinturier grapes, polyphenols, malvidin, kaempferol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Responses of grapevine cells to physiological doses of ethanol, among which induced resistance to heat stress

Grapevine naturally endures stresses like heat, drought, and hypoxia. A recent study showed very low oxygen levels inside grape berries, linked to ethanol content.

Conservation: the best valorisation strategy for wine growing areas

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.