terclim by ICS banner
IVES 9 IVES Conference Series 9 VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

Abstract

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies. A dual luciferase (DL) assay involving putative target gene promoters was also conducted. Overexpression of VviSOC1a led to the development of leaf-like sepals, petals with increased chlorophyll content and plant sterility phenotypes. VviAG1-OE lines displayed hastened floral initiation, stamenoid petals, dwarfed fruit, as well as forming fleshy fruit sepals which gave the appearance of ripened pericarp tissue. The observed floral phenotypes were, in part, supported by the modulation of genes required for floral organ specification in tomato. VviSOC1a and VviAG1 displayed opposite expression trends, while also repressing each other’s expression in the DL assay. Collectively, the findings of this study supported a role for VviSOC1a in regulating floral organ specification, through the repression of the stamen and carpel identity gene VviAG1. An additional function for VviAG1 in berry development and ripening is also suggested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jenna Jolliffe1,2, Claudio Moser2, Stefania Pilati2 and Justin Lashbrooke3*

1South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
2Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
3Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

SOC1, AG1, Flower, transcription factor, development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A research agenda for terroir: an empirical, international expert study

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010)

Innovative sparkling wines, traditional grape varieties and autochthonous yeasts: emerging trends for regional products diversification

Italy, like all the major vine-growing and wine-producing countries, has experienced a decline in wine export volumes in recent years.

High-throughput direct monitoring of microbial resources for oenology by direct injection mass spectrometry

Microorganisms have been widely used in oenology since prehistoric times. Their metabolism significantly impacts many wine properties and is particularly essential for the production of flavor compounds, thereby affecting perceived wine quality.

Influence de la nutrition potassique sur le manque d’acidité des vins issus du cépage Negrette

A worrying drop in the acidity of wines has been observed in many wine regions, such as Bordeaux (Merlot), Burgundy (Pinot Noir), Côtes-du-Rhône (Grenache) or Rioja (Tempranillo). This lack of acidity is particularly marked in the Midi-Pyrenean vineyards of the Côtes du Frontonnais (Tournier, 1993). However, the acidity of a wine is one of the main factors of its quality, in fact, a low acidity combined with an insufficient tannic structure leads to rapid oxidation of wines and makes them age prematurely.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).