OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Yeast diversity in Vitis labrusca l. Ecosystems

Yeast diversity in Vitis labrusca l. Ecosystems

Abstract

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola. Interestingly, P. cecembensis, not previously recognized in V. vinifera grapes or musts, was also found in V. labrusca L. grapes in Portugal (Azores Archipelago). Thus, this yeast species could be specifically associated with V. labrusca L. grapes, regardless of their geographic origin and/or the associated human interventions. Moreover, I. hanoiensis, a yeast species rarely isolated in V. vinifera grapes, was also identified in V. labrusca ecosystems from Argentina and Portugal. These results suggest that specific Vitis-microbial interactions may underlie the assembly of specific grape vine yeast communities. Also interestingly, some yeast genera commonly isolated from V. vinifera ecosystems (e.g., Hanseniaspora, Torulaspora and Metschnikowia) were rarely identified and almost never dominated the yeast communities in the V. labrusca L. musts we analyzed. Our results reinforce the research interest in biodiversity and extraordinary wine yeasts in ecological niches alternative to traditional V. vinifera ecosystems.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Alberto Luis Rosa, Maria LauraRaymond, Francisco Conti

Laboratorio de Genética y Biología Molecular IRNASUS – CONICET Facultad de Ciencias Quimicas – Universidad Catolica de Cordoba Cordoba – Argentina 

Contact the author

Keywords

Vitis, labrusca, yeast, biodiversity

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

On-farm monitoring of grapevine water and nitrogen status in relation to different soil management practices in Valais, Switzerland

In response to increasing societal demands for environmentally-friendly viticulture, winegrowers are adapting their cultivation techniques, particularly by reducing the use of herbicides.

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.