terclim by ICS banner
IVES 9 IVES Conference Series 9 The grapevine QTLome is ripe: QTL survey, databasing, and first applications

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Abstract

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait. This has led to the collection of more than 150 published QTL papers and to the FAIRification of the fields relevant to the grapevine QTL database. A grapevine-QTL frontend application for uploading data has been developed to support QTL curators.
For each specific trait, the QTLome will be anchored firstly to the grapevine reference PN40024.T2T(v5) genome/annotation and secondly to the published diverse genome assemblies. The generated “Grapevine QTL browser” will (i) enhance the understanding of the genetic architecture of diverse phenotypes, (ii) reveal consistent QTLs across studies (consensus genomic intervals), which are particularly valuable for marker-assisted breeding, (iii) assist the identification of candidate genes (relevant alleles) and their integration into biological/biotechnological applications. The potential of this resource will be demonstrated by a case study.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Silvia Vezzulli1*§, Marco Moretto, Paola Bettinelli1, Javier Tello2, Pablo Carbonell-Bejerano2, Agnès Doligez3, Elsa Chedid4, Marina de Miguel4, Elisa Marguerit4, Éric Duchêne5, Ludger Hausmann6, Franco Röckel6, Daniela Holtgräwe7, Noam Reshef8, Varoostha Govender9, Justin Lashbrooke9, Claudia Muñoz-Espinoza10, Marco Meneses11, Patricio Hinrichsen11, Summaira Riaz12, Chin Feng Hwang13, Lance Cadle-Davidson14, Diana Bellin15, Alessandra Amato15, Marianna Fasoli15, José Tomás Matus16, Lakshay Anand17, Camille Rustenholz5, Laura Costantini1

1 Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Trento, Italy
2 Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de la Rioja, Gobierno de La Rioja, Logroño, Spain
3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4 EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
5 SVQV, INRAE-University of Strasbourg, Colmar, France
6 Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
7 Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany
8 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
9 Department of Genetics, Stellenbosch University, Matieland, South Africa
10 Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
11 Instituto de Investigaciones Agropecuarias, INIA La Platina, Santiago, Chile
12 Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
13 State Fruit Experiment Station at Mountain Grove Campus, Missouri State University, Springfield, Missouri, USA
14 USDA-ARS Grape Genetics Research Unit, Geneva, New York, USA
15 Department of Biotechnology, University of Verona, Verona, Italy
16 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
17 Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, Kentucky, USA

§ equally contributed

Contact the author*

Keywords

QTL browser, database, manual curation, Vitis ontology, FAIR

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.