OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

Abstract

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Based on the tunable diode laser absorption spectroscopy (TDLAS), a diode laser spectrometer (namely, the CO2-DLS) dedicated to monitor gas-phase CO2 in the headspace of champagne glasses was developed [3,4]. The concentration of gas-phase CO2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the first 10 minutes following the action of pouring. Our results show the strong impact of various tasting conditions (such as the volume of wine dispensed, the glass shape, the wine temperature, or the level of effervescence, for example) on the release of gas-phase CO2 above the champagne surface. Moreover, a recent upgrading of the CO2-DLS allowed us to evidence that the concentration of gas-phase CO2 in the headspace of a champagne glass is far from being homogeneous in either space or time, with much higher gas-phase CO2 concentrations close to the wine interface.

references:

[1] G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise, Eur. Phys. J. Spec. Top. 226 (2017) 3–116.
[2] L. Hewson, T. Hollowood, S. Chandra, and J. Hort. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosensory Perception, 2 (2009) 94–107.
[3] A.-L. Moriaux, R. Vallon, C. Cilindre, B. Parvitte, G. Liger-Belair, V. Zeninari, Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines, Sensors Actuators B Chem. 257 (2018) 745–752.
[4] A.-L. Moriaux, R. Vallon, B. Parvitte, V. Zeninari, G. Liger-Belair, C. Cilindre, Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis, Food Chem. 264 (2018) 255–262.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Anne-Laure Moriaux (1), Raphaël Vallon (1), Bertrand Parvitte (1), Virginie Zeninari (1), Guillaume Roffiaen (2), Laurent Panigai (2), Gérard Liger-Belair (1), Clara Cilindre (1) 

(1) Equipe Effervescence, Champagne et Applications (GSMA – UMR CNRS 7331), Université de Reims Champagne-Ardenne, BP 1039, Reims, France. 
(2) Centre Vinicole – Champagne Nicolas Feuillatte, Chouilly, BP210, Epernay, France. 

Contact the author

Keywords

Champagne, CO2, Diode laser spectrometry, Tasting conditions 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Talking about terroir

When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.