Terroir 2016 banner
IVES 9 IVES Conference Series 9 1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Abstract

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures. In the region, vine can produce twice a year, because annual average temperature is 26.5°C, with high solar radiation and water from irrigation. Petit Verdot cultivar was used commercially in one winery until 2011, when this one stopped to produce fine wines (Vitis vinifera L.) to produce table wines (Vitis labrusca). This cultivar presents a high powerful to help tropical wines increasing their stability, due to the high acidity, low pH e high phenolic concentration in the grapes and red wines. NMR spectroscopy is a powerful tool allowing in a single analysis to find many analytical compounds in grapes and wines. PCA multivariate statistical analysis applied on NMR data allows to discriminate samples and to identify markers compounds from the variables evaluated.

The aim of this work was to evaluate Petit Verdot wines harvested in three different soils, the first one sandy, the second one gravelly cambisoil and the third one sandy-clayey argisoils, by using 1H NMR spectroscopy data. Vines were planted in 2002 in the winery on six hectars, conducted on traditional lyre, grafted onto 101-14 Mgt and irrigated by drip. Grapes were harvested in January 2014 and wines were elaborated by traditional red winemaking, then analyzed one month after bottling by 1H NMR spectroscopy. It was possible to determine alcohols, organic and amino acids, and phenolics in the Petit Verdot wines. Results showed a significantly difference in terms of metabolic compounds, of the wines evaluated from the three different soils. PCA was able to find markers from each soil type. Results are discussed according to the enological potential of each plot.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Giuliano Elias Pereira (1), Fernando Hallwass (2), Raphael Soares (3), Marcos Martins Masutti (4), Juliane Barreto de Oliveira (5)

(1) Enology Researcher, Brazilian Agricultural Research Corporation – Embrapa Grape & Wine/Tropical Semiarid, P.O. Box 23, Zip Code 56.302-970, Petrolina-PE, Brazil;
(2) Department of Chemistry, Federal University of Pernambuco, Av. Luiz Freire s/n, 50.740-540, Recife-PE, Brazil; 3IF Ipojuca, PE 60, km 14, Califórnia, Zip Code 55590-000, Ipojuca-PE, Brazil; 4IF Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil.

Contact the author

Keywords

Vitis vinifera L.; grapes; tropical wines; 1H NMR spectroscopy; metabolic fingerprint; multivariate statistical analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.