Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts. The observations were conducted over three vintages on two grapevine cultivars in several pedoclimatic conditions of the Leman wine region, Switzerland. Knowing that the YAN in the must plays a key role in wine quality, the aim of this study was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral (white grape, Chasselas x Chardonnay) and five plots of Gamaret (red grape, Gamay x Reichensteiner) were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg N/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes from each treatment were harvested and then vinified separately using a standard protocol. YAN levels in musts were significantly enhanced by foliar-nitrogen fertilisation, but strong vintage, site and cultivar effects were pointed out: average YAN gain over 3 years was 69 ± 32 mg N/L in Doral must and 52 ± 27 mg N/L in Gamaret must. Some sites consistently presented higher gains (e.g. Doral at Villeneuve, +106 mg N/L). The bigger water holding capacity and the deeper effective root zone seemed to mainly enhance vine nitrogen status. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics and, in the case of Doral only, was highly correlated to the overall appreciation of the wines (R2 = 0.70).

Significance and impact of the study: This work confirms that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions and cultivar. The impact of foliar-N supply is not always sufficient for a significant improvement of wine overall appreciation particularly for the cv. Gamaret. This observations may assist the development of sustainable practices to increase the YAN concentration in musts.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS (2), Johannes RÖSTI (1), Fabrice LORENZINI (3), Agnès DIENES-NAGY (3), Jorge SPANGENBERG (4), Katia GINDRO (1), Jean-Laurent SPRING (1) and Olivier VIRET (1)

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland
(4) Institute of Earth Surface Dynamics, University of Lausanne, Switzerland

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.