Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Abstract

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines. To fill the gap on this subject, this work focused on changes in color, phenolic and volatile composition of red wines treated for 7 days with 0.5 g/L of fungoid chitosan, added in both undissolved and dissolved form. When compared to untreated samples, minor changes in phenolic compounds were observed in chitosan added wines, mainly involving hydroxycinnamic acids and flavonols, with reductions of 3 mg/L and 1.5 mg/L respectively. Ellagic acid, however, was absorbed up to 2 mg/L, which reduced his content by 40%. Since some of these compounds actively participate to co-pigmentation with anthocyanins, the color of wines was influenced accordingly. Chitosan marginally absorbed some aroma compounds, including ethyl esters and volatile phenols whose amounts were slightly but significantly decreased after treatment. Visual and olfactive comparison of samples confirmed that, at the dose adopted, chitosan is suitable to be used in red winemaking for microbial or physical stability purposes, not severely impairing the quality parameters of the final wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio Castro Marin, Fabio Chinnici

Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 40, 40127

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.