Terroir 2016 banner
IVES 9 IVES Conference Series 9 Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Abstract

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs. An entropy-based index used to characterize the heterogeneity of soil particle size distribution has been recently recognized to be controlled by the lithological properties at landscape scale. This index, known as the Balanced Entropy Index (BEI), which has been identified as a very good predictor of soil water content, is a promising tool in geosciences because it provides a continuous parameterization of soil texture that enables establishing quantitative relationships between soil texture and all the hydropedological attributes related to it.

In this study, carried out in the Portuguese winegrowing region called Região Demarcada do Douro (RD Douro), we explored the BEI in the lithostratigraphic units, and its potential relationship with the vineyard distribution and characteristics at plot scale. The data set for this work was the soil map of RD Douro scale 1/25 000, the vineyard distribution, and the information of the soil map database, which includes analytical and morphological data of 1 217 soil profiles.

Results evidenced that, in areas with similar lithological properties, vineyard plant density is linearly related with the soil texture heterogeneity, being this relationship stronger in metamorphic lithologies than in granitic lithologies. In light of this and other remarkable results we concluded that the BEI is a useful new tool that might have multiple applications in terroir studies.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Joaquín CÁMARA, Alberto LÁZARO, Vicente GÓMEZ-MIGUEL

Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Avda. Puerta de Hierro, 2, Spain

Contact the author

Keywords

soil texture heterogeneity, Balanced Entropy Index, plant density, fractals, RD Douro

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Estudios de zonificación vitícola en España

La delimitación y caracterización de zonas vitícolas plantea en España problemas específicos no sólo por las características peculiares del territorio sino también por el tamaño

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).