terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Orals - Viticulture, table grapes, dried grapes and unfermented grape products 9 A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

Abstract

Until the 19th century, the wild form of cultivated grapevines (vitis vinifera L. Subsp. Sylvestris gmelin, v. Sylvestris) was ubiquitous in many european and west asian regions. However, many factors like deforestation, the intensification of agriculture, or the introduction of several pests and pathogens decimated its presence in these growing sites, and natural populations are now mostly restricted to river-bank forests and creeks with specific soil and climate conditions. In fact, v. Sylvestris is now considered an endangered subspecies that is protected by law in many european countries to prevent its loss. In the past, there diversity was great and the different populations have adapted optimally to a variety of natural habitats. In view of the current and future climatic challenges, this diversity could prove to be the key to climate-resilient adaptation in breeding programs. Therefore, the protection and study of the remaining wild individuals is one key element for the preservation of our viticultural landscapes. In this study, we collected publicly available ssr data of v. Sylvestris genetic resources from 14 scientific publications, which was merged with the information obtained after the genetic characterization of 1460 new samples. As a result, we compiled the largest dataset for v. Sylvestris available to date, with approximately 3,000 unique genetic profiles collected from 20 countries of the natural growing range of this subspecies. After data curation and alleles’ sizes standardisation according to reference varieties and allelic frequencies distribution patterns, this dataset was used to explore the genetic diversity and population structure of v. Sylvestris in a broad context. Preliminary results identified a series of clusters of genetically related samples, which mirrored their region of origin and reflected a major geographic substructuring within the explored sites. Additionally, we designed a core collection of v. Sylvestris genetic resources for targeted preservation across national borders. Altogether, this work provided a global update of the current status of this endangered subspecies, and provides relevant data for its proper management and conservation.

Eine populationsgenetische studie von vitis vinifera l. Subsp. Sylvestris gmelin auf der grundlage von 3.000 individuen aus 20 ländern

Bis zum 19. Jahrhundert war die wildform der kultivierten weinrebe (vitis vinifera l. Subsp. Sylvestris gmelin, v. Sylvestris) in vielen regionen europas und westasiens allgegenwärtig. Viele faktoren wie die abholzung der wälder, die intensivierung der landwirtschaft oder die einschleppung verschiedener schädlinge und krankheitserreger haben ihr vorkommen in diesen anbaugebieten jedoch dezimiert. Die natürlichen populationen sind heute meist auf uferwälder und bäche mit besonderen boden- und klimabedingungen beschränkt. Tatsächlich gilt v. Sylvestris heute als gefährdete unterart, die in vielen europäischen ländern gesetzlich geschützt ist, um ihren verlust zu verhindern. In der vergangenheit gab es eine große vielfalt, und die verschiedenen populationen haben sich optimal an eine vielzahl von natürlichen lebensräumen angepasst. Angesichts der aktuellen und zukünftigen klimatischen herausforderungen könnte sich diese vielfalt als schlüssel zu einer klimaresilienten anpassung in zuchtprogrammen erweisen. Der schutz und die erforschung der verbliebenen wilden individuen ist daher ein zentrales element für den erhalt unserer weinbaulandschaften. In dieser studie haben wir öffentlich verfügbare ssr-daten der genetischen ressourcen von v. Sylvestris aus 14 wissenschaftlichen publikationen gesammelt und mit den genetischen daten von 1460 neuen proben zusammengeführt. Das ergebnis ist der größte bisher verfügbare datensatz für v. Sylvestris mit etwa 3.000 einzigartigen genetischen profilen aus 20 ländern des natürlichen verbreitungsgebiets dieser unterart. Nach der aufbereitung der daten und der standardisierung der allelgrößen anhand von referenzsorten und allelfrequenzen wurde dieser datensatz verwendet, um die genetische vielfalt und die populationsstruktur von v. Sylvestris in einem breiten kontext zu untersuchen. Vorläufige ergebnisse ergaben eine reihe von clustern genetisch verwandter proben, die ihre herkunftsregion widerspiegelten und eine bedeutende geografische unterstrukturierung innerhalb der untersuchten standorte widerspiegelten. Darüber hinaus haben wir eine core collection genetischer ressourcen von v. Sylvestris für die gezielte erhaltung über nationale grenzen hinweg angelegt. Insgesamt lieferte diese arbeit eine globale aktualisierung des aktuellen status dieser gefährdeten unterart und liefert relevante daten für ihre angemessene bewirtschaftung und erhaltung.

Une étude génétique des populations de vitis vinifera l. Subsp. Sylvestris gmelin basée sur 3.000 individus de 20 pays

Jusqu’au 19ème siècle, la forme sauvage des vignes cultivées (vitis vinifera l. Subsp. Sylvestris gmelin, v. Sylvestris) était omniprésente dans de nombreuses régions d’europe et d’asie occidentale. Cependant, de nombreux facteurs tels que la déforestation, l’intensification de l’agriculture ou l’introduction de plusieurs ravageurs et pathogènes ont décimé sa présence et les populations naturelles sont aujourd’hui principalement limitées aux abords des forêts et ruisseaux présentant des conditions de sol et de climats spécifiques. De ce fait, v. Sylvestris est aujourd’hui considéré comme une sous-espèce menacée, protégée dans de nombreux pays européens afin d’enrayer sa disparition. Dans le passé, sa diversité était grande et les différentes populations se sont adaptées de manière optimale à une variété d’habitats naturels. Au vu des défis climatiques actuels et futurs, cette diversité pourrait s’avérer être la clé d’une adaptation au changement climatique dans les programmes de croisement. Par conséquent, la protection et l’étude des individus sauvages subsistants est un élément clé pour la préservation de nos paysages viticoles. Dans cette étude, nous avons rassemblé des données ssr publiquement disponibles sur les ressources génétiques de v. Sylvestris à partir de 14 publications scientifiques, qui ont été fusionnées avec les informations obtenues après la caractérisation génétique de 1460 nouveaux échantillons. Nous avons ainsi compilé le plus grand ensemble de données sur v. Sylvestris disponible à ce jour, avec environ 3 000 profils génétiques uniques collectés dans 20 pays de l’aire de répartition naturelle de cette sous-espèce. Après nettoyage des données et la standardisation de la taille des allèles en fonction des variétés de référence et des schémas de distribution des fréquences alléliques, ces données ont été utilisées pour explorer la diversité génétique et la structure de la population de v. Sylvestris dans un large contexte. Les résultats préliminaires ont permis d’identifier une série de groupes d’échantillons génétiquement apparentés, qui reflètent leur région d’origine ainsi qu’une sous-structuration géographique majeure au sein des sites explorés. En outre, nous avons défini une core-collection de ressources génétiques de v. Sylvestris en vue d’une préservation ciblée au-delà des frontières nationales. Globalement, ce travail a permis une synthèse générale du statut actuel de cette sous-espèce menacée, et fournit des données pertinentes pour sa gestion et sa conservation.

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Franco Röckel1, Kristine Margaryan2, Georgios Merkouropoulos3, Valérie Laucou4, Gabriella De Lorenzis5, Javier Tello6, Goran Zdunic7, María Teresa De Andrés8, Francisco Baeta9, Jorge Cunha9, Osvaldo Failla10, Maria  Stella Grando11, Javier Ibáñez6, Thierry Lacombe4, Luka Marinov7, Gregorio Munoz8, Giacomo Pellissetti12, Savvas Savvides13, Anna Schneider14, Dimitrios Taskos3, Ibrahim Uzun15, Dragoslav Ivanisevic16, Edi Maletic17, Andrej Perko18, M. Timothy Rabanus-Wallace19, Stanko Vrisic18, Reinhard Töpfer1, Erika Maul1

1 Julius Kühn Institute (Jki) institute for grapevine breeding geilweilerhof, siebeldingen, Germany
2 Institute Of Molecular Biology Of National Academy Of Sciences ra, 0014 yerevan, Armenia
3 Department Of Vitis, Institute Of Olive Tree, Subtropical Crops And Viticulture, Hellenic Agricultural Organization Dimitra, Lykovrysi, Greece
4 Umr Agap Institut, Univ Montpellier, Cirad, Inrae, Institut Agro, France
5 Department Of Agricultural And Environmental Sciences, University Of Milan, Italy
6 Instituto De Ciencias De La Vid Y Del Vino (csic, ur, gobierno de la rioja), logroño, Spain
7 Institute For Adriatic Crops And Karst Reclamation, Split, Croatia
8 Instituto Madrileño De Investigación Y Desarrollo Rural Agrario Y Alimentario (Imidra)
9 Instituto Nacional De Investigação Agrária E Veterinária, Polo De Inovação De Dois Portos, Portugal
10 Department Of Agricultural And Environmental Sciences, University Of Milan
11 Center for agriculture food and environment (c3a),University Of Trento, San Michele All’adige, Italy
12 Department Of Agricultural, Forest And Food Sciences, University Of Turin, Torino, Italy
13 Agricultural Research Institute, Ministry Of Agriculture Rural Development And Environment, Nicosia, Cyprus
14 Institute For Sustainable Plant Protection – Research Council Of Italy, Grugliasco, Italy
15 University Of Akdeniz, Faculty Of Agriculture, Department Of Horticulture, Antalya, Türkiye
16 University Of Novi Sad, Faculty Of Agriculture, Novi Sad, Serbia
17 Department Of Viticulture And Enology, Faculty Of Agriculture, University Of Zagreb, 10000 Zagreb, Croatia
18 University Centre Of Viticulture And Enology Meranovo, Faculty Of Agriculture And Life Sciences, University Of Maribor, Pivola 10, 2311 Hoče, Slovenia
19 School Of Agriculture, Food, And Ecosystem Sciences, The University Of Melbourne, Melbourne, VIC, Australia

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Exploring physiological diversity in Vitis genotypes: hydraulic traits in vines for oenological purposes and vines for table grapes

to maintain viticulture under global warming conditions, it is important to carefully select the appropriate genotypes for each vine-growing region and develop cultivars that are drought resistant. this ability is highly dependent on hydraulic traits, which are dynamic and vary according to the vine’s developmental stage and climatic conditions. this framework steadily enhances our understanding of the differences in drought resistance among vitis genotypes. however, there is still a need to comprehensively grasp the intra-specific variability, particularly between oenological and table grape cultivars.

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Evaluation of spraying effects of plant protection unmanned aerial vehicle on two different training systems of vine in Northeast China

In recent years, the application of plant protection unmanned aerial vehicle (UAV) in agricultural pest control has become more and more popular. However, there are few reports about the application of plant protection UAV for wine grapes, and there are no studies comparing the spraying effect of plant protection UAV with that of manual operation in vineyards. In this context, the objective of this study was to explore the feasibility of using plant protection UAV in vineyards instead of manual operations by evaluating the effectiveness of UAV spray in two common grape training systems in Northeast China.

Biological control of the vineyard: new microbiological findings from CREA-VE

According to the Food and Agriculture Organisation (FAO), 75.866 km2 of the world is dedicated to grape cultivation. About 71.0% of the world’s grape production is destined for winemaking, 27.0% for consumption as fresh fruit and 2.0% as raisin. Grape production is mainly hindered by fungal infections, that can develop both in field and post-harvest.