Terroir 2014 banner
IVES 9 IVES Conference Series 9 Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

Abstract

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region. 

The aim of our study was to determine the state of vineyards of each single parcel of the integrated area, and the characterization of the ecology of the vineyard sites. Based on the information collected a site-specific vineyard design and cultural practice could be achieved on the given territory. 

The state of vineyards, concerning variety, training system, trellis system, row and vine spacing, row orientation, and production characteristic was determined by visual inspection of every single parcel. Airborne hyperspectral imagery was taken, covering the whole Tokaj Wine Region. High-resolution spectral-spatial geodata were captured and analyzed to focus on variety determination, evaluate biophysical properties (NDVI, LAI, Red Edge Position), canopy continuity, structure and identify row anomalies. 

The characterization of vineyards sites was accomplished based on large-scale determination of topography, soil and meso- and macroclimate variables covering the total 11000 hectares planted and potential vineyard land area of Tokaj Region. According to soil survey Digital Optimalized Soil Related Maps and Information Method was taken to produce the proper thematic data layers in 25 m spatial resolution. Results of surveys are analyzed and managed in a geographical information system designed for the project. 

The methods applied during the data collection and analysis will be detailed, while the preliminary results of the state of vineyard and the characterization of vineyard sites will be demonstrated.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Gy. LUKÁCSY (1), A. TOMBOR (2), G. GORECZKY (2), L. NAGY (2), J. SZABÓ (3), P. LÁSZLÓ (3), P. BURAI (4), L. BEKŐ (4), A. JUNG (5), D. KRISTÓF (6), Gy. D. BISZTRAY (1), B. BÁLÓ (1)

(1) Department of Viticulture Institute of Viticulture and Oenology Corvinus University of Budapest 
(2) Tokaj Kereskedőház Ltd. 
(3) Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy for Sciences 
(4) Research Institute of Remote Sensing and Rural Development, University of Károly Róbert 
(5) Department of Geoinformatics & Remote Sensing, University of Leipzig, Germany 
(6) Institute of Geodesy, Cartography and Remote Sensing 

Contact the author

Keywords

Tokaj, vineyard survey, characterization of vineyard site, digital soil mapping, LIDAR survey, hyperspectral imaging

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].