Terroir 2014 banner
IVES 9 IVES Conference Series 9 The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

Abstract

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH). 

To study the effect of nitrogen on these target metabolites, an experiment on Sauvignon blanc vines was performed in Bordeaux and Sancerre areas (France). Four nitrogen treatments were applied: control, soil application of 50kg N/ha, soil application of 100kg N/ha and foliar application of 15kg N/ha. Secondary metabolites were measured in grape berries and in wines produced through small scale vinifications. 

Yeast Assimilable Nitrogen and N-tester measurements showed a significant difference in vine nitrogen status among the four treatments. The analysis of volatile compounds showed an increase in the content of 3-sulfanylhexan-1-ol precursors (P-3SH) and GSH in berries from vines with high N status. Similar effect of nitrogen was observed on the concentration of 3SH and GSH in wine. 

This study will allow better management of vine nitrogen status in vineyards allowing a quantitative and qualitative control of grape berries.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Pierre Helwi (1), (3), Sabine Guillaumie (1), Cécile Thibon (2), Philippe Darriet (2), Cornelis van Leeuwen (1), (3) 

(1) Univ. Bordeaux, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 
(2) Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA4577, USC1366, INRA, 33882 Villenave d’Ornon France 
(3) Bordeaux Sciences Agro, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 

Contact the author

Keywords

terroir, nitrogen, Sauvignon blanc, berry, wine, volatile thiols, methoxypyrazines, glutathione

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.