terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Abstract

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine. This study examines the differences in the analytical parameters of the main membrane and thermal methods currently employed to remove ethanol from wine and produce dealcoholized wine [1-7]. A total of 600 litres of Spanish white wine from the 2023 vintage served as the base. The wine was dealcoholized using leading thermal methods—vacuum distillation, Spinning Cone Column, and traditional distillation. Additionally, it underwent dealcoholization using key membrane techniques, such as osmotic distillation and dialysis, in combination with other methods: reverse osmosis followed by osmotic distillation of the permeate, reverse osmosis paired with dialysis, and reverse osmosis alone to produce an alcohol-free base by adding demineralized water to the retentate before applying dialysis. Each approach was replicated three times to ensure consistency in results. The batches were stabilized post-process with sulphur dioxide and Nagardo®, a natural preservative, before bottling. After one month of storage in bottles, each sample was analysed: colour parameters were measured with a spectrophotometer [8], key minerals were determined using, basic wine parameters assessed via FTIR [9], redox (mV) with ORP sensor, further parameters like total phenols was determinate by Folin-Ciocalteu reagent and spectrophotometer, and acetaldehyde are determined through UV-enzymatic method.

The findings demonstrated distinct variations in key analytical parameters across the different dealcoholization techniques. Membrane-based methods, particularly reverse osmosis combined with osmotic distillation, exhibited superior retention of essential compounds and colour stability compared to thermal processes. In contrast, thermal techniques, such as vacuum distillation and traditional distillation, resulted in significant colour degradation. Advanced analyses using atomic absorption spectrometry, FTIR, and NMR highlighted changes in mineral content and structural components of the wine matrix, underscoring the critical impact of the chosen dealcoholization process on wine quality. Further, the results obtained are extensively discussed in the presentation.

References

[1] Belisario-Sánchez, Y. Y., Taboada-Rodríguez, A., Marín-Iniesta, F., & López-Gómez, A. (2009). Journal of Agricultural and Food Chemistry, 57, 6770.
[2] Saha, B., Torley, P. J., Blackman, J. W., & Schmidtke, L. M. (2013). Vigne et Vin Publications Internationales.
[3] Calvo, J. I., Asensio, J., Sainz, D., Zapatero, R., Carracedo, D., Fernández-Fernández, E., Prádanos, P., Palacio, L., & Hernández, A. (2022). Membranes, 12.
[4] Catarino, M., & Mendes, A. (2011). Innovative Food Science & Emerging Technologies, 12, 330.
[5] Catarino, M., Mendes, A., Madeira, L., & Ferreira, A. (2007). Separation Science and Technology, 42, 3011.
[6] Pilipovik, M. V., & Riverol, C. (2005). Journal of Food Engineering, 69, 437.
[7] Sam, F. E., Ma, T.-Z., Salifu, R., Wang, J., Jiang, Y.-M., Zhang, B., & Han, S.-Y. (2021). Foods (Basel, Switzerland), 10.
[8] Salinas, F., Christmann, M., & Freund, M. (2023). BIO Web Conf., 56.
[9] Schmitt, M., Patz, C., Rheinberger, A., Giehl, A., Freund, M., Christmann, M., & Wolf, C. (2023). Analytical examination of dealcoholized wines. BIO Web of Conferences, 68, 02006.

Publication date: June 5, 2025

Type: Oral communication

Authors

Lorenzo Italiano1,*, Yogesh Kumar2, Matthias Schmitt1, Christmann Monika1

¹ Institut of Oenologie, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
2 Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521, Cesena, FC, Italy

Contact the author*

Keywords

dealcoholized wine, dealcoholization, chemical parameters, thermo and membrane technologies

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.