terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 HPLC-based quantification of elemental sulfur in grape juice

HPLC-based quantification of elemental sulfur in grape juice

Abstract

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important. For example, it is thought that sulfur residues can contribute to the formation of undesirable volatile sulfur compounds (VSCs) such as hydrogen sulfide (H2S), and methanethiol (MeSH), which negatively affect wine quality.2,3 Existing analytical methods to measure elemental sulfur in grape and wine samples are laborious and often require large volumes of samples. This study has developed a straightforward HPLC-DAD method for measuring elemental sulfur following a small-scale solvent-based extraction process. The method was subsequently employed in a study investigating the impact of residual elemental sulfur in grape juice, under low and high nitrogen conditions, on the formation of VSCs during fermentation and ageing.

References

[1] Thomas, C. S.; Boulton, R. B.; Silacci, M. W.; Gubler, W. D. The Effect of Elemental Sulfur, Yeast Strain, and Fermentation Medium on Hydrogen Sulfide Production During Fermentation. Am. J. Enol. Vitic. 1993, 44 (2), 211.

[2]Rankine, B. C. Nature, Origin and Prevention of Hydrogen Sulphide Aroma in Wines. Journal of the Science of Food and Agriculture 1963, 14 (2), 79–91. https://doi.org/10.1002/jsfa.2740140204.

[3] Jastrzembski, J. A.; Allison, R. B.; Friedberg, E.; Sacks, G. L. Role of Elemental Sulfur in Forming Latent Precursors of H2S in Wine. J. Agric. Food Chem. 2017, 65 (48), 10542–10549. https://doi.org/10.1021/acs.jafc.7b04015.

Publication date: June 5, 2025

Type: Oral communication

Authors

Sukhpreet Gill1,*, Rebecca C. Deed1,2, Tanya Rutan3, Ngarita Warden3, Rebecca E. Jelley1, Bruno Fedrizzi1

1 School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
2 School of Biological Sciences, University of Auckland, 5 Symonds St, Auckland, New Zealand
3 Bragato Research Institute, 85 Budge St, Blenheim, New Zealand

Contact the author*

Keywords

elemental sulfur, HPLC, grape juice, acetone extraction

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

The economic impact of drones on viticultural processes

Nowadays there are many challenges facing both winegrowers and workers, in other agricultural practices, related to the growing demand for food products, the safety and quality of these products, and the preservation of the environment…

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Prototype development for the recovery of wine aromas from fermentation gases

Dealcoholised beverages are trendy. But this market segment is slowed down by flavour losses during dealcoholisation and by the reduced perception of flavours in the absence of alcohol.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).