terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

Abstract

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1]. Acetaldehyde accumulation continues during the growth phase. Finally, the concentration decreases during the stationary phase until the end of alcoholic fermentation [2], [3], [4]. Accumulation of acetaldehyde differs according to yeast species and strains, ranging from 0.5 for the least productive to more than 700 mg/L for the most productive [5]. At low concentrations, acetaldehyde is a pleasant and fruity aroma while at high levels, its odor becomes irritating and pungent which depreciates the organoleptic qualities of wines for consumers. The primary objective of this study was to describe and understand the evolution of acetaldehyde concentration during wine alcoholic fermentation and to shed light on the impact of temperature, the main parameter that manages fermentation kinetics but also acetaldehyde dynamics synthesis. One recurrent question persisted on the kinetics of acetaldehyde production from biological and/or physical aspects: did the temperature impact on the metabolism of production of the molecule by the yeast or on the contrary, did it favor its evaporation, or did it impact of both mechanisms? Indeed, although contradictory, studies agree to consider the fermentation temperature as a key point of acetaldehyde production: for some authors, the fermentation temperature affects little the final acetaldehyde content, while others correlate the increase in acetaldehyde content with increasing fermentation temperature [6].

In the present work, thanks to new online monitoring approaches and associated mathematical methods for data treatment, complete acetaldehyde production balances during fermentation allow biological consumption to be dissociated from physical evaporation in order to answer many of the questions posed.

First of all, from a biological point of view, high fermentation temperatures lead to an important production of acetaldehyde at the end of the growth phase, but also favor a better consumption of the molecule by the yeast during stationary phase, leading to a low residual acetaldehyde content at the end of the fermentation. Additionally, physical evaporation is even more important at high temperatures due to the boiling point of the molecule, reinforcing the final decrease of the acetaldehyde concentration. On the other hand, thanks to the use of production balance, it was possible to determine that the decrease of acetaldehyde concentration during the stationary phase is mainly due to the yeast consumption than to the physical effect of evaporation. These different observations were further corroborated by the use of anisothermal temperature profiles. Finally, the consumption part being the most important in the decrease of the acetaldehyde concentration during the second part of the process, metabolic links were revealed between acetaldehyde and markers of metabolism such as organic acids.

References

[1] Cheraiti, N., Guezenec, S., Salmon, J.-M. (2010). Appl. Microbiol. Biotechnol. 86, 693–700.

[2] Aguera, E., Sire, Y., Mouret, J.-R., Sablayrolles, J.-M., Farines, V. (2018). J. Agric. Food Chem. 66, 6170–6178.

[3] Jackowetz, J.N., Dierschke, S., Mira de Orduña, R. (2011). Food Res. Int. 44, 310–316.

[4] Ochando, T., Mouret, J.-R., Humbert-Goffard, A., Aguera, E., Sablayrolles, J., Farines, V. (2020). Food Res. Int. 136, 109607.

[5] Liu, S.-Q., Pilone, G.J. (2000). Int. J. Food Sci. 35, 49–61.

[6] Li, E., Mira de Orduña, R. (2017). J. Ind. Microbiol. Biotechnol. 44, 229–236.

Publication date: June 5, 2025

Type: Oral communication

Authors

Charlie Guittin1, Faïza Maçna1, Marc Perez1, Adeline Barreau2, Xavier Poitou2, Jean-Roch Mouret1, Vincent Farines1,*

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 R&D department, JAS Hennessy & Co, Cognac, France

Contact the author*

Keywords

acetaldehyde, online monitoring, alcoholic fermentation, production balance

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

White wine lees: unlocking the relationship between chemical composition and antioxidant potential

The wine-making process generates numerous by-products at each stage (crushing, fermentation, ageing), including wine lees, which account for almost 25% of the total quantity.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.