terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Abstract

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required. Particular attention should be devoted to the spatial and temporal interactions between varieties for a specific demarcated region and clime and vineyard conditions. Taking advantages of chemometric tools, this talk aims to provide advances to examine interactions between climatic conditions, vineyard ecosystem and physicochemical data, namely data from parameters related with grape technological maturity state and secondary volatile metabolites, associated to grapes aroma potential. High volume of information from high throughput technologies, namely from comprehensive two-dimensional gas chromatography (GC×GC-TOFMS) used for volatile fraction characterization, were selected. All the data are intrinsically correlated and generally produced by another multivariate set of factors or continuous variables, collected in what is defined as the design matrix. Such design factors usually involve the presence of a treatment, but other sources of biological or technical variability in the data are often measured as well. The ASCA framework, based on ANOVA and PCA, leads to promising results [1]. Also, Common components and specific weights analysis, has been reported as a chemometric method for dealing with complexity of food products [2]. Thus, on this talk it will be discussed the applicability of several chemometric tools, particular focus will be done on innovative approaches that combine data sets with fixed and random effects. As case study, it was selected a set of varieties cultivated in Bairrada Appellation (Portugal), collected across five consecutive years. Combination of linear mixed models with Principal Component Analysis (LiMM-PCA) was applied to analyse the impact of three factors, harvest, grape variety and vineyard on a set of several physical-chemical parameters. LiMM-PCA allowed to analyse dataset with underlying design, which included both fixed (harvest and cultivar) and random (vineyard) factors. The vineyards selected for sampling were considered representative of the Appellation. Thus, considering the vineyard as a random factor permitted to draw conclusions about the Appellation under study as a whole. In addition, the approach used enabled the ranking of variables importance and the assessment of the adaptability of each variety, providing a high-value tool for supporting vineyard and wine production management, amid current climate challenges.

Acknowledgments

This work was supported by National Funds by FCT, through the Associate Laboratories LAQV-REQUIMTE (UIDB/50006/2020 and UIDP/50006/2020) and CESAM (UIDP/50017/2020; UIDB/50017/2020; LA/P/0094/2020), and under the scope of the Strategic Project to Support the Wine Industry in the Central Region (CENTRO-04-3928-FEDER-000001).

References

[1] Martin, M., Govaerts, B., (2020). J. Chemometrics, e3232, 1-10.

[2] Mazerolles, G., Hanafi, M., Dufour, E., Bertrand, D., Qannari, E.M. (2006). Chemom. Intell. Lab. Syst. 81, 41 – 49.

Publication date: June 5, 2025

Type: Oral communication

Authors

Sílvia M. Rocha1,*, Cátia Martins1, Jéssica Marques1,2, Hyoram Assunção1, Alisa Rudnitskaya3, Ana Raquel Santos2, José Pedro Soares2

1 Departament of Chemistry & LAQV, University of Aveiro, 3810-193 Aveiro, Portugal
2 Comissão Vitivinícola da Bairrada, Avenida Engenheiro Tavares da Silva, 3780-203 Anadia, Portugal
3 Departament of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal

Contact the author*

Keywords

grapes, volatile secondary metabolites, GC × GC-TOFMS, chemometrics

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the impact of different closures on tannin evolutions by using metabolomic approach

Condensed tannins (CTs), polymers of flavan-3-ols, are a class of polyphenolic compounds that play a significant role in the organoleptic qualities of red wines, particularly influencing color, astringency and bitterness. These properties are highly dependent on size and structure of these compounds.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].