terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Composition and biological potential of grape and wine phenolic compounds

Composition and biological potential of grape and wine phenolic compounds

Abstract

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins). Tannins are water-soluble phenolic compounds with a molecular weight of 500–3000 Da that can precipitate alkaloids, gelatine, and other proteins. Proanthocyanidins form a considerable portion of the tannins found in wine and in particular contribute heavily to the colour and flavour of red wines. Proanthocyanidins are high-molecular-weight polymers formed from flavan-3-ol monomeric units. Several oligomers, dimers, trimers, tetramers, and pentamers, exist. Tetramers or greater of these flavonols are known as polymeric proanthocyanidins and the astringency of the molecule increases with size. Oligomeric proanthocyanidins are less astringent, bind less strongly to proteins, and are more soluble [2]. A new subfamily of condensed tannin with an unusual skeleton, named crown procyanidins, have been reported [3]. Furthermore, the sensation of astringency caused by tannins is a direct function of their mDP and galloylation percentage [4]. Anthocyanins are glucoside of anthocyanidins. Anthocyanins are differentiated by the degree of hydroxylation and methylation, and also by the nature of the Oses bound to the molecule. Anthocyanidin is the chromophore moiety of the pigment. Acetylglucoside and cinnamoylglucoside anthocyanins have lower perception thresholds than the glucoside fraction at concentrations found in wines [5]. Descriptors associated with these fractions were bitterness and astringency. Anthocyanins also make a sensory contribution to the perception of wine, correlated with the acetylation of molecules. The presence of C-glucosidic ellagitannins in wines and spirits is due to their presence in wood species such as Quercus petraea, Q. robur and Q. alba. The main C-glucosidic ellagitannins extracted by wines during ageing in oak barrels are continuously transformed through condensation, hydrolysis, and oxidation reactions. Phenolic compounds are known to have health benefits, such as a chemopreventive role toward cardiovascular, cancer, and degenerative diseases, as well as pathologies with inflammation. Therefore, wine and grape pomace constitute an abundant source of a wide range of polyphenols, and are sources of antioxidants for nutrition and health.

References

[1] Waterhouse AL, Teissedre P-L (1997) Levels of phenolics in California varietal wines, ACS Symposium Series 661, 12-23.

[2] Chira K, Lorrain B, Ky I, Teissedre P-L (2011). Molecules 16,1519-1532.

[3] Zeng L, Pons-Mercadé P, Richard T, Krisa S, Teissedre P-L, Jourdes M (2019) Molecules 24(10), 1915

[4] Ma W., Pierre Waffo-Teguo P., Jourdes M., Li H.,Teissedre P.L.  PLoS One, 2016 Aug 12;11(8):e0161095. doi: 10.1371/journal.pone.0161095. eCollection 2016.

[5] Paissoni M.A.; Waffo-Teguo P.; Ma W.; Jourdes M.; Rolle L.; Teissedre P.L.; (2018) Scientific Reports DOI: 10.1038/s41598-018-35355-x, Vol.8(1) 7098

Publication date: June 5, 2025

Type: Oral communication

Authors

Pierre-Louis Teissedre1,*

1 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR OEnologie 1366, ISVV, 33140 Villenave-d’Ornon, France

Contact the author*

Keywords

grapes, wine, oak, phenolics, tannins, anthocyanins, ellagitannins, quality, colour, astringency, bitterness, health effects

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].