terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Potential of native Uruguayan yeast strains for production of Tannat wine

Potential of native Uruguayan yeast strains for production of Tannat wine

Abstract

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression. Winemakers usually use pure cultures like Saccharomyces cerevisiae to ensure a reliable and complete process. Alternatively, the use of commercial wine yeasts is somewhat controversial, as it may lack certain desirable characteristics provided by natural fermentation. A key challenge is finding non-conventional yeasts that complete fermentation while enhancing a wine’s uniqueness, complexity, and appeal. In our previous studies, we isolated, identified, and conducted physiological and biochemical characterizations of indigenous yeasts from Tannat grapes in the Maldonado vineyard (1). Three strains demonstrated notable fermentation properties: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. In this study, we assessed the oenological potential of these strains at a semi-pilot scale during the vinification of a Tannat must with an expected ethanol content of 11-12%. All three native strains consumed around 98% of the must sugars, resulting in robust ethanol production in the range of 9-11%. Pilot-scale trials highlighted the strong fructophilic character of S. bacillaris, which left very low residual fructose levels (0.006 g/L compared to ≥0.01 g/L for the other species) while yielding lower ethanol (9%), a profile beneficial for crafting lower-alcohol wines.

Wines with native strains, stood out for presenting greater fruity notes, especially S. bacillaris, showed enhanced fruity notes like plum, raisins, and candied fruit, linked to higher ester, norisoprenoid, and terpene levels detected by GC-MS. The β-glucosidase activity of these strains was also investigated, as this enzyme enhances aromatic complexity by releasing aroma compounds from glycosidic precursors during fermentation. Given its notably high β-glucosidase activity under acidic conditions of S. diversa T191FS, it was subsequently evaluated as a pure starter in Muscat wine fermentation. Volatile compound analysis by GC-MS showed a significant increase in total terpenes compared to the commercial strain S. cerevisiae (145 vs. 45 ug/L, respectively). S. diversa stood out for its ability to release terpenic varietal aromas.

References

[1] Morera G, de Ovalle S, González-Pombo P. Prospection of indigenous yeasts from Uruguayan Tannat vineyards for oenological applications. Int Microbiol. 2022 Nov;25(4):733-744. doi: 10.1007/s10123-022-00257-6. Epub 2022 Jun 21. PMID: 35727473.

Publication date: June 4, 2025

Type: Poster

Authors

Paula González-Pombo1,*, Guillermo Morera1 and Stefani de Ovalle1

1 Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo-Uruguay

Contact the author*

Keywords

native-yeast, fermentation, wine, aroma

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].