terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Abstract

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1]. However, the winemaking process generates a substantial amount of by-products, primarily grape pomace (GP), wine lees, and wastewater, posing serious environmental and economic challenges [2]. Efficient strategies for the sustainable valorisation of these residues are therefore essential. Recent research highlights the potential of grape pomace (GP), which has traditionally been considered as a mere waste, as a valuable source of bioactive compounds [3-5]. With up to 70% of the total phenolic content of grapes retained post-vinification [6], GP valorisation aligns with circular economy principles, presenting innovative and sustainable solutions.

This study investigated the phenolic composition and antioxidant capacity of GP from different grape varieties from the Rhône Valley area of France, including red (Alicante, Syrah, Mourvèdre, Grenache Noir), white (Vermentino, Grenache Blanc, Roussanne, Clairette), and rosé (Grenache Rosé) varieties. Total polyphenol content (TPC) was measured using the Folin-Ciocalteu method, while phenolic profiling—covering phenolic acids, flavonoids (flavan-3-ols, anthocyanins, flavonols, flavones, etc.), and stilbenes—was conducted using HPLC-UV-QqQ. Antioxidant capacity was evaluated through DPPH, ABTS, FRAP, and ORAC assays.

The results revealed significant phenolic retention in GP post-vinification, ranging from 15–35 GAE/g DW in fermented (red) GP and 20–25 GAE/g DW in non-fermented (white, rosé) GP. Fermented GP seeds, particularly from Syrah and Alicante varieties, displayed the highest phenolic content, rich in flavan-3-ol monomers and procyanidins, and exhibited superior antioxidant activity compared to GP skins. Non-fermented GP also demonstrated a notable phenolic profile, with elevated flavan-3-ol and flavonol levels and antioxidant capacities comparable to red GP varieties. Correlations between phenolic composition and antioxidant activity were explored to better understand the functional properties of bioactive compounds.

These findings underscore the potential of GP as a low-cost by-product that can be transformed into high-value polyphenolic extracts for applications in nutraceutical, cosmetic, and food industries.

References

[1] International Organisation of Vine and Wine. State of the World Vine and Wine Sector in 2023, OIV, 2024.

[2] Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13(9), 1131.

[3] Onache, P. A.; Geana, E.-I.; Ciucure, C. T.; Florea, A.; Sumedrea, D. I.; Ionete, R. E.; Tit, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395.

[4] Caponio, G. R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075.

[5] Chedea, V. S.; Macovei, S. O.; Bocsan, I. C.; Măgureanu, D. C.; Levai, A. M.; Buzoianu, A. D.; Pop, R. M. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation—A Possible Alternative for Non-Steroidal Anti-Inflammatory Drugs? Molecules 2022, 27, 6826.

[6] Milinčić, D. D.; Stanisavljević, N. S.; Kostić, A. Ž.; Soković Bajić, S.; Kojić, M. O.; Gašić, U. M.; Barać, M. B.; Stanojević, S. P.; Tešić, Ž. L.; Pešić, M. B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739.

Publication date: June 4, 2025

Type: Poster

Authors

Anna Karastergiou1, Anne-Laure Gancel1, Michael Jourdes1, Pierre-Louis Teissedre1,*

1 Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave-d’Ornon, France

Contact the author*

Keywords

grape pomace, phenolic compounds, antioxidant activity, sustainable valorisation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].