terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 From bush to glass: unlocking the potential of indigenous microbes in Australian wines

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Abstract

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages. Bioprospecting in the Australian Bush is a novel approach to domesticate favourable environmental microorganisms for use in industry. Australia has over 24,000 unique plant species in which lie potential niches for novel microbes. One of these is Eucalyptus gunnii, commonly known as the Cider Gum tree. Historically, the tree sap was used by Aboriginal Australians to produce a sweet, naturally fermented drink called way-a-linah, and which is an excellent place to search for novel yeast strains. We collected samples from E. gunnii and have begun to isolate and identify yeast species using ITS profiling. Fermentations of isolates in 96-well plates were performed using a Chemically Defined Grape Juice (CDGJM), where growth and sugar utilisation were measured. Isolates with efficient sugar utilisation capabilities were screened on a larger scale, and their secondary metabolites and volatile compounds were analysed using HPLC and GC-MS. Out of the more than 550 isolates identified, the most abundant genera found were Hanseniaspora, Kregervanrija and Zygosaccharomyces. Out of all the screened isolates, 54% were able to use more than 90% of sugars in CDGJM. We expect this project will result in the identification and characterisation of novel yeast unique to Australia, suitable for wine fermentation.

Publication date: June 4, 2025

Type: Poster

Authors

Tea Knezevic1,*, Jennifer Gardner1, Jin Zhang1, Cristian Varela1, Vladimir Jiranek1,2,3

1 Discipline of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
2 School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
3 Australian Research Council Training Centre for Innovative Wine Production, SA 5064, Australia

Contact the author*

Keywords

bioprospecting, Eucalyptus gunnii, novel yeast strains, sugar utilisation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.