terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Abstract

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1]. These effects are particularly problematic in arid and semi-arid regions such as the Mediterranean areas, where high summer temperatures and low rainfall accelerate the degradation of grape acids [2]. This results in wines lacking sufficient acidity to maintain the desired level of freshness and quality. To address this issue, the wine industry employs various techniques to reduce pH and enhance acidity, such as acid addition, ion exchange, blending with high-acidity wines, and biological methods. Among these, cation exchange resins stands out as one of the most widely used and effective approaches. For that, this study explores the effect of treating must with cation exchange resins on the composition and quality of Monastrell red wines, comparing them with wines adjusted to the same pH with tartaric acid and untreated control wines. The results showed that treating part of the must with cation exchange resins (20% and 30%) significantly lowed pH values and increased total acidity compared to the control must. This trend was also observed in wines treated with tartaric acid. The resulting wines showed no significant differences on the concentration of phenolic compounds but must acidification favored the color quality associated to an increase of the color intensity and a decrease in the tone values. Moreover, sensory analysis showed tasters preferred treated wines, particularly those made with must acidified with cation exchange resins, which were perceived as fresher in the mouth. Therefore, must treatment with cation exchange resins may be a good method for lowering the pH and increasing the acidity of Monastrell red wines solving the problem of the significant decrease in acidity that grapes are suffering due to the temperature increase in the semi-arid regions associated to climate change.

References

[1] Just-Borràs, A., Pons-Mercadé, P., Gombau, J., Giménez, P., Vilomara, G., Conde, M., Zamora, F. (2022). OENO One, 56(2), 179-192.

[2] Sweetman, C., Sadras, V. O., Hancock, R. D., Soole, K. L., Ford, C. (2014). J. Exp. Bot. 65(20), 5975-5988.

Publication date: June 4, 2025

Type: Poster

Authors

Ana Leticia Pérez Mendoza1, Alejandro Martínez-Moreno1, Encarna Gómez-Plaza1, Paula Pérez Porras1, Paola Sánchez Bravo1, Ricardo Jurado Fuentes2, Ana Belén Bautista-Ortín1,*

1 Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
2 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

titratable acidity, pH, cationic exchange, climate change, wine color

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).