terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Abstract

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins. On the other hand, understating the changes occurring during alcoholic fermentation is of paramount importance in wine science and wine making, and untargeted metabolomics, which enable the registration of thousands of metabolites in a single analysis, could serve as a valuable tool for the comprehensive study of these changes.

The aim of this study was to track the metabolomic profile of Muscat of Alexandria grape must during the industrial-level alcoholic fermentation. For this purpose, numerous samples were collected from eleven tanks originating from three wineries on Lemnos Island across two vintages (2019 and 2020) and analysed using ultra-high pressure liquid chromatography coupled to time-of-flight mass spectrometry in both positive and negative electrospray ionization modes (UPLC-QTOF-MS). The data processing and analysis divided the annotated metabolites into different categories based on the behaviour. Between others, the tentative biomarkers included sugars, organics acids, vitamins, amino acids, peptides, flavonoids, nucleosides and terpene glycosides. Notably, small peptides exhibited analogous trends with amino acids, indicating rapid consumption similar to the amino acids. This peptides consumption potentially elucidated the observed proline increase, which is not preferrable by the yeasts. Additionally, some peptides exhibited increased concentrations towards the end of fermentation. Furthermore, the hydrolysis of terpenes and phenolic glycosidic bonds, alongside the release of nucleic acid building blocks into the must during fermentation, were highlighted. Overall, this comprehensive analysis enhances understanding of how alcoholic fermentation influences wine quality under realistic conditions.

References

[1] Marinaki, M.; Mouskeftara, T.; Arapitsas, P.; Zinoviadou, K. G.; Theodoridis, G. (2023) Molecules, 28 (12), 4653.

[2] Marinaki, M.; Sampsonidis, I.; Lioupi, A.; Arapitsas, P.; Thomaidis, N.; Zinoviadou, K.; Theodoridis, G. (2023) Talanta, 253, 123987.

Publication date: June 4, 2025

Type: Flash talk

Authors

Maria Marinaki1,2,3, Panagiotis Arapitsas4,5,*, Christina Virgiliou2,3,6, Georgios Theodorodis1,2,3

1 Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
3 FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
4 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 12243 Athens, Greece
5 Research and Innovation Centre, Fondazione Edmund Mach, 38010 Trento, Italy
6 School of Chemical Engineering, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece

Contact the author*

Keywords

metabolomics, grape must, Muscat of Alexandria, alcoholic fermentation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.

Consumer perception of wine bottle weight and its impact on sustainability

In the context of sustainability, this study evaluated consumer perception regarding the impact of glass bottle weight on wine valuation.

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.