terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Abstract

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2]. Starmerella bacillaris, a non-Saccharomyces yeast, remains relatively understudied, yet recent discoveries have highlighted distinct metabolic traits among wine yeasts [3] and the promising role of its polysaccharides in winemaking [4]. This study investigated different S. bacillaris strains alongside Saccharomyces cerevisiae as potential sources of functional yeast derivatives for protein stabilization in white wine.

Yeast biomass was cultivated through aerobic fed-batch propagation and mechanically processed to obtain yeast cell walls. To generate distinct polysaccharidic derivatives, yeast cell walls were subjected to various extraction processes. The physicochemical properties of the obtained macromolecular derivatives were characterized using near-infrared (NIR) spectroscopy, HPLC, SDS-PAGE, and high-resolution size-exclusion chromatography (HRSEC). The stabilization efficacy of the obtained derivatives was assessed in white wine through turbidity analysis, identifying a promising product from S. bacillaris. Ultrafiltration was then employed to isolate the active polysaccharide fraction, which underwent further characterization through linkage analysis and nuclear magnetic resonance (NMR) spectroscopy. The fraction was identified as a linear mannan, distinguishing it from the typically branched mannoproteins found in S. cerevisiae-derived cell wall extracts [5].

These findings reveal the unique structural features of S. bacillaris cell walls and their technological potential for alternative protein stabilization strategies in winemaking.

References

[1] M. Ángeles Pozo-Bayón, I. Andújar-Ortiz, and M. V. Moreno-Arribas, “Scientific evidences beyond the application of inactive dry yeast preparations in winemaking,” Aug. 2009. doi: 10.1016/j.foodres.2009.03.004.

[2] Y. Liu et al., “Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review,” Mar. 15, 2021, Elsevier B.V. doi: 10.1016/j.ijbiomac.2021.01.125.

[3] V. Tyibilika, M. E. Setati, A. Bloem, B. Divol, and C. Camarasa, “Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production,” Int J Food Microbiol, vol. 411, Feb. 2024, doi: 10.1016/j.ijfoodmicro.2023.110537.

[4] L. de P. D. Moreira et al., “Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines,” Fermentation, vol. 8, no. 6, p. 252, Jun. 2022, doi: 10.3390/FERMENTATION8060252/S1.

[5] R. Bastos, P. G. Oliveira, V. M. Gaspar, J. F. Mano, M. A. Coimbra, and E. Coelho, “Brewer’s yeast polysaccharides — A review of their exquisite structural features and biomedical applications,” Carbohydr Polym, vol. 277, Feb. 2022, doi: 10.1016/j.carbpol.2021.118826.

Publication date: June 4, 2025

Type: Poster

Authors

Zeno Molinelli1,*, Chiara Nadai1, Simone Vincenzi1, Alessio Giacomini1, Paolo Antoniali2, Daniele Pizzinato3, Celine Sparrow3, Cristina De Castro4, Antonio Molinaro4 and Viviana Corich1

1 Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
2 Italiana Biotecnologie S.r.l., Via Vigazzolo, 112, 36054 Montebello Vicentino, Italy
3 Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thevenet, 51530, Magenta, France
4 Department of Agricultural Sciences, University of Napoli Federico II, Reggia di Portici – Piazza Carlo di Borbone, 1, 80055, Portici

Contact the author*

Keywords

yeast polysaccharides, Starmerella bacillaris, protein stability, cell wall

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.