terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Abstract

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2]. Starmerella bacillaris, a non-Saccharomyces yeast, remains relatively understudied, yet recent discoveries have highlighted distinct metabolic traits among wine yeasts [3] and the promising role of its polysaccharides in winemaking [4]. This study investigated different S. bacillaris strains alongside Saccharomyces cerevisiae as potential sources of functional yeast derivatives for protein stabilization in white wine.

Yeast biomass was cultivated through aerobic fed-batch propagation and mechanically processed to obtain yeast cell walls. To generate distinct polysaccharidic derivatives, yeast cell walls were subjected to various extraction processes. The physicochemical properties of the obtained macromolecular derivatives were characterized using near-infrared (NIR) spectroscopy, HPLC, SDS-PAGE, and high-resolution size-exclusion chromatography (HRSEC). The stabilization efficacy of the obtained derivatives was assessed in white wine through turbidity analysis, identifying a promising product from S. bacillaris. Ultrafiltration was then employed to isolate the active polysaccharide fraction, which underwent further characterization through linkage analysis and nuclear magnetic resonance (NMR) spectroscopy. The fraction was identified as a linear mannan, distinguishing it from the typically branched mannoproteins found in S. cerevisiae-derived cell wall extracts [5].

These findings reveal the unique structural features of S. bacillaris cell walls and their technological potential for alternative protein stabilization strategies in winemaking.

References

[1] M. Ángeles Pozo-Bayón, I. Andújar-Ortiz, and M. V. Moreno-Arribas, “Scientific evidences beyond the application of inactive dry yeast preparations in winemaking,” Aug. 2009. doi: 10.1016/j.foodres.2009.03.004.

[2] Y. Liu et al., “Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review,” Mar. 15, 2021, Elsevier B.V. doi: 10.1016/j.ijbiomac.2021.01.125.

[3] V. Tyibilika, M. E. Setati, A. Bloem, B. Divol, and C. Camarasa, “Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production,” Int J Food Microbiol, vol. 411, Feb. 2024, doi: 10.1016/j.ijfoodmicro.2023.110537.

[4] L. de P. D. Moreira et al., “Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines,” Fermentation, vol. 8, no. 6, p. 252, Jun. 2022, doi: 10.3390/FERMENTATION8060252/S1.

[5] R. Bastos, P. G. Oliveira, V. M. Gaspar, J. F. Mano, M. A. Coimbra, and E. Coelho, “Brewer’s yeast polysaccharides — A review of their exquisite structural features and biomedical applications,” Carbohydr Polym, vol. 277, Feb. 2022, doi: 10.1016/j.carbpol.2021.118826.

Publication date: June 4, 2025

Type: Flash talk

Authors

Zeno Molinelli1,*, Chiara Nadai1, Simone Vincenzi1, Alessio Giacomini1, Paolo Antoniali2, Daniele Pizzinato3, Celine Sparrow3, Cristina De Castro4, Antonio Molinaro4 and Viviana Corich1

1 Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
2 Italiana Biotecnologie S.r.l., Via Vigazzolo, 112, 36054 Montebello Vicentino, Italy
3 Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thevenet, 51530, Magenta, France
4 Department of Agricultural Sciences, University of Napoli Federico II, Reggia di Portici – Piazza Carlo di Borbone, 1, 80055, Portici

Contact the author*

Keywords

yeast polysaccharides, Starmerella bacillaris, protein stability, cell wall

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

The economic impact of drones on viticultural processes

Nowadays there are many challenges facing both winegrowers and workers, in other agricultural practices, related to the growing demand for food products, the safety and quality of these products, and the preservation of the environment…

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.