terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Studying the redox state of wines under oxidative processes with a multi-parametric analysis

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

Abstract

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines. Spectrophotometric methods (ABTS, DPPH) are the reference methods, but their major limitation is their interference with other reducing compounds present in wines.1 In this context, electrochemical methods are of great interest, as they are fast, easy to use and well selective for such species. Various procedures are described in the literature, based on voltammetric techniques associated with carbon electrodes, in some cases functionalized to improve detection sensitivity and/or increase selectivity towards interfering compounds.2-4 Approaches based on the use of screen-printed disposable sensors (PolyScan Vinventions) made also possible to obtain a fingerprint and/or classification of certain phenolic compounds, or to study different alternatives to oak wood for the wine industry.5,6 The research performed by the RedoxWine joint laboratory (CBMN – Biolaffort) is first devoted to the development of analytical protocols based on electrochemical methods to detect some key molecules in wine and define a signature of its redox state in real time. Several electrochemical sensors are developed to study the relationships between reductants, i.e. concentrations of sulfite, phenols and derivatives, and the levels of oxidants, first oxygen and daughter Reactive Oxygen Species (H2O2, O2°-), generated or provided in a controlled manner. We are thus studying wine responses under controlled oxidative stress, starting from normoxic conditions to chemically forced conditions (additions of known concentrations of O2, H2O2 or by direct electrochemical oxidation of the wines) to accelerate matrix ageing processes. The evolution of the wines redox chemistry is eventually studied using a combination of spectroscopic and electrochemical techniques: redox signature, sulfite, dissolved O2, pH, color (CieLab) and thiols.7

References

[1] Lopez-Vélez, M., et al. Critical Reviews in Food Science and Nutrition, 2003, 43, 233–244

[2] Makhotkina, O., Kilmartin, P.A., Analytica Chimica Acta, 2010, 668, 155-165

[3] Barroso, M. F., et al. Biosensors Bioelectronics, 2011, 30, 1-12

[4] Gonzalez, A. et al. Food Chem. 2018, 269, 1-8

[5] Kilmartin, P.A., Electrochem. Comm. 2016, 67, 39-42

[6] Wirth, J. et al. Beverages, 2021, 7, 1

[7] Dauphin, A., Guilbault, S., Arbault, S., 2025, submitted

Publication date: June 4, 2025

Type: Poster

Authors

Alice L. Dauphin1, Samuel Guilbault1, Fabrice Meunier2, Arnaud Massot2, Virginie Moine2, Stéphane Arbault1,*

1 Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
2 BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France

Contact the author*

Keywords

redox state, wine oxidation, electrochemistry

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

New insights of translocation of smoke-related volatile phenols in vivo grapevines

The increasing frequency of wildfires in grape-growing regions is seen as a significant risk for the grape and wine industry.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Gas Chromatography-Olfactometry (GCO) screening of odorant compounds associated with the tails-off flavour in wine distillates

The development of off-flavours in wine distillates, particularly those associated with the tails fraction, is a key issue in the production of high-quality spirits.