terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Abstract

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols. This bridging is believed to reduce bitterness and astringency while enhancing color stability in aged wine [1]. The elongation reactions are products of interaction of flavonoids with acetaldehyde, an oxidation product of ethanol. While studies have been conducted confirming the reaction between acetaldehyde and various flavan-3-ols, there has not been research elucidating the structure of individual ethylidene-bridged flavan-3-ols. Previous acetaldehyde-flavan-3-ol nuclear magnetic resonance (NMR) experiments have either been conducted using the entire reaction mixture [2], or of the total amount of precipitates, which would include all of the polymers from the reaction. The goal of this experiment was to isolate various ethylidene-bridged catechin oligomers (dimer, trimer and tetramer) and confirm their proposed structure and yield using NMR. To investigate this, exogenous acetaldehyde and catechin (both 500 mg/L) were added to model wine (12.5% EtOH, pH 3.5), and incubated at 35°C for 7 days to allow for sufficient reaction. Using reverse-phase preparative-high-performance liquid-chromatography (RP-prep-HPLC) affixed with a diode array detector (DAD), the individual ethylidene-bridged catechin oligomers were isolated. Ethylidene-bridged oligomer purity and stability were determined using previously created liquid-chromatography mass-spectrometry (LC-MS) methods. After 10 hours of incubation at 20°C, the signal of the ethylidene bridged dimer was 23.3% of the initial isolate signal, demonstrating degradation after removal from the model solution. Isolates were dried using a freeze-dryer to preserve purity and stability. Interestingly, the ethylidene-bridged oligomers are stable prior to isolation from the reaction mixture. These products could potentially be in equilibrium with the reactants. All isolates (ethylidene-bridged dimer, trimer, tetramer) were redissolved in methanol-d4 and measured using both 1H and 13C NMR for elucidation of structure. NMR characterization of these compounds has increased our understanding of LC-MS data conducted on actual wine investigating the fate and kinetics of acetaldehyde mediated bridging of flavonoids.

References

[1] Sheridan, M., Elias, R. (2016). J Agric Food Chem, 64, 45, 8615-8624.

[2] Peterson, A., Waterhouse, A. (2016). J Agric Food Chem, 64, 36, 6869–6878.

Publication date: June 4, 2025

Type: Poster

Authors

Ezekiel R. Warren1, Ryan J. Elias1, Misha T. Kwasniewski1,*

1 Department of Food Science, The Pennsylvania State University, University Park, 16802, United States

Contact the author*

Keywords

acetaldehyde, aging, oxidation, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Chemical characterization of distinctive aroma profiles of Valpolicella and Amarone wines

Valpolicella is an Italian wine producing region, famous for the production of high-quality red wines. A distinctive characteristic of this region is the extensive use of post-harvest withering.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.