terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Abstract

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols. This bridging is believed to reduce bitterness and astringency while enhancing color stability in aged wine [1]. The elongation reactions are products of interaction of flavonoids with acetaldehyde, an oxidation product of ethanol. While studies have been conducted confirming the reaction between acetaldehyde and various flavan-3-ols, there has not been research elucidating the structure of individual ethylidene-bridged flavan-3-ols. Previous acetaldehyde-flavan-3-ol nuclear magnetic resonance (NMR) experiments have either been conducted using the entire reaction mixture [2], or of the total amount of precipitates, which would include all of the polymers from the reaction. The goal of this experiment was to isolate various ethylidene-bridged catechin oligomers (dimer, trimer and tetramer) and confirm their proposed structure and yield using NMR. To investigate this, exogenous acetaldehyde and catechin (both 500 mg/L) were added to model wine (12.5% EtOH, pH 3.5), and incubated at 35°C for 7 days to allow for sufficient reaction. Using reverse-phase preparative-high-performance liquid-chromatography (RP-prep-HPLC) affixed with a diode array detector (DAD), the individual ethylidene-bridged catechin oligomers were isolated. Ethylidene-bridged oligomer purity and stability were determined using previously created liquid-chromatography mass-spectrometry (LC-MS) methods. After 10 hours of incubation at 20°C, the signal of the ethylidene bridged dimer was 23.3% of the initial isolate signal, demonstrating degradation after removal from the model solution. Isolates were dried using a freeze-dryer to preserve purity and stability. Interestingly, the ethylidene-bridged oligomers are stable prior to isolation from the reaction mixture. These products could potentially be in equilibrium with the reactants. All isolates (ethylidene-bridged dimer, trimer, tetramer) were redissolved in methanol-d4 and measured using both 1H and 13C NMR for elucidation of structure. NMR characterization of these compounds has increased our understanding of LC-MS data conducted on actual wine investigating the fate and kinetics of acetaldehyde mediated bridging of flavonoids.

References

[1] Sheridan, M., Elias, R. (2016). J Agric Food Chem, 64, 45, 8615-8624.

[2] Peterson, A., Waterhouse, A. (2016). J Agric Food Chem, 64, 36, 6869–6878.

Publication date: June 4, 2025

Type: Flash talk

Authors

Ezekiel R. Warren1, Ryan J. Elias1, Misha T. Kwasniewski1,*

1 Department of Food Science, The Pennsylvania State University, University Park, 16802, United States

Contact the author*

Keywords

acetaldehyde, aging, oxidation, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).