terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Abstract

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1]. However, the impact of these terroir factors on interspecific Vitis varieties in Eastern Canada’s cold climate remains largely unexplored [2]. Additionally, the interaction between terroir and grape variety in cold-climate viticulture, including V. vinifera and interspecific hybrids, requires further study. To address this gap, we analyzed the effects of vineyard location (Quebec and Nova Scotia), meteorological conditions (temperature and precipitation), and berry maturity stage across two vintages (2019 and 2020) on the aromatic profiles of Vitis vinifera Riesling and the interspecific hybrid L’Acadie blanc. Berry samples (EL-36 to EL-38) were collected from commercial vineyards in the Gaspereau Valley, Nova Scotia, and Île d’Orléans, Quebec. Bound volatile compounds were analyzed via solid-phase extraction and gas chromatography-mass spectrometry (SPE-GC-MS) [3]. GC-MS data were processed using MZmine 3, with compound identification performed via NIST MS Search and Kovats indexes, and semi-quantification using 2-octanol as an internal standard. Statistical analyses included ANOVA to assess vineyard location, vintage, and maturity effects. Principal Component Analysis (PCA) explored sample clustering, while Partial Least Squares Regression (PLS) examined relationships between environmental factors and aroma composition. Results showed a significant influence of geographical origin on volatile profiles. Riesling from Nova Scotia exhibited higher concentrations of acids, terpenes, and volatile phenols than Quebec Riesling, while L’Acadie blanc from Quebec contained more alcohols and fewer benzene derivatives than its Nova Scotia counterpart, highlighting terroir-driven variations. PLS regression confirmed strong correlations between meteorological conditions and glycosylated aroma compounds, with temperature and growing degree days (GDD) shaping berry aroma profiles. These findings underscore the role of environmental factors in aroma development, providing insights for viticultural practices in emerging cold-climate wine regions such as Quebec and Nova Scotia and for developing new resistant, cold-hardy Vitis varieties.

References

[1] van Leeuwen, C., Barbe, J.-C., Darriet, P., Geffroy, O., Gomès, E., Guillaumie, S., Helwi, P., Laboyrie, J., Lytra, G., Le Menn, N. (2020). Oeno One, 54(4), 985-1006.

[2] Pedneault, K., Dorais, M., Angers, P. (2013). J. Agric. Food Chem.

[3] Campos-Arguedas, F., Sarrailhé, G., Nicolle, P., Dorais, M., Brereton, N. J., Pitre, F. E., Pedneault, K. (2022). Front. Plant Sci., 13.

Publication date: June 4, 2025

Type: Flash talk

Authors

Pamela Nicolle1,*, Karine Pedneault1

1 Institut des sciences de la forêt tempérée, Université du Québec en Outaouais, Québec, Canada

Contact the author*

Keywords

glycosylated aroma precursors, terroir, volatile compounds, cold-climate viticulture

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].