terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

Abstract

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors. These compounds are responsible for the floral and fruity aromas characteristic of wine (1). Analytical methods for grape and wine analysis, particularly for volatile metabolites, often involve costly instrumentation and labor-intensive extraction procedures. In contrast, vibrational spectroscopy techniques, such as ultraviolet-visible (UV-Vis), and near-infrared (NIR) spectroscopy, have gained recognition as valuable analytical tool due to their simplicity, speed, and non-destructive nature. Currently, there is a notable scarcity of studies presenting accurate predictive models for terpene compounds in grape must (2). The objective of this work is to ascertain the viability of applying a wide range spectrum spectroscopy (UV-Vis-NIR) to develop precise models capable of predicting the terpene composition of the grape must. Our investigation specifically targets on the determination of glycosylated terpenes, including Z-8-hydroxylinalool, cis-furan linalool oxide, cis-pyran linalool oxide, geraniol (trans), HO-trienol (3,7-dimethyl-1,5,7-octatrien-3-ol), linalool, trans-furan linalool oxide, trans-pyran linalool oxide, and α-terpineol. Partial Least Squares Regression (PLSR) was employed to construct models. The results showed satisfactory predictive models for linalool (r2 = 0.8; RMSE = 0.89), geraniol (r2 = 0.8; RMSE = 8.63), and α-terpineol (r2 = 0.84; RMSE = 2.56). The remaining predictive models developed showed acceptable coefficients of determination. UV region was identified as the most relevant region for the construction of the PLS-R models. These findings highlight the potential of this innovative technique to revolutionize the wine industry by enabling faster and cost-effective analysis of volatile compounds in must, thereby optimizing the winemaking process and improving product traceability.

References

[1] Vilanova, M., García, M., & González, M. (2012). GC-MS analysis of volatile compounds in grapes. Journal of Food Science, 77(3), C215–C220

[2] Boido, E., Fariña, L., Carrau, F., Dellacassa, E., & Cozzolino, D. (2013). Characterization of Glycosylated Aroma Compounds in Tannat Grapes and Feasibility of the Near Infrared Spectroscopy Application for Their Prediction. Food Analytical Methods, 6(1), 100-111

Publication date: June 4, 2025

Type: Poster

Authors

Marta Pinillos-Robres M.1, José Ignacio Manzano1, Mar Vilanova1,*

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)

Contact the author*

Keywords

NIR, spectroscopy, wine, must, PLS-R, volatile compounds

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

New insights of translocation of smoke-related volatile phenols in vivo grapevines

The increasing frequency of wildfires in grape-growing regions is seen as a significant risk for the grape and wine industry.

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].