terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Abstract

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring [1]. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD). These instruments also allow for continuous and non-destructive measurements. In this study, we explored the potential of pulsed fluorescence detection to quantify free SO2 in wine via the headspace (HS-PFD) and developed a method to minimize disturbances to SO2 equilibrium.

Our approach involves injecting wine into a syringe, adding nitrogen to create a headspace, and gradually releasing the gas phase into the SO2 analyzer. Molecular SO₂ levels are determined using a calibration curve based on model wine spiked with potassium metabisulfite, while free SO2 is calculated considering temperature, pH, and alcohol by volume (ABV) with the equations described in [2]. The method demonstrated high sensitivity, with detection and quantification limits of 0.012 mg/L and 0.032 mg/L, respectively—equivalent to roughly 0.5 and 1.3 mg/L of free SO2 in a wine with pH 3.5 and 10% ABV. The coefficients of determination of calibration curves ranged from 0.99 to 0.999, and the method’s precision, assessed across 18 wines measured in triplicate, yielded an average relative standard deviation of 3.5% (ranging from 1.2% to 8%).

We analyzed 81 Swiss commercial wines using HS-PFD and corrected iodometric titration (CIT). Results from both methods were comparable for white and rosé wines (white: N = 29, slope = 0.9, R2 = 0.96; rosé: N = 9, slope = 0.98, R2 = 0.95). However, HS-PFD consistently measured lower free SO2 in red wines compared to CIT (N = 43, slope = 0.61, R2 = 0.85). Further analysis of 20 selected wines using CIT, aeration-oxidation (A-O), HS-PFD and acidification-HS-PFD (Acid-HS-PFD) demonstrated that methods acidifying wine samples (CIT, A-O and Acid-HS-PFD) overestimate free SO2 in red wines, as acidification released weakly bound SO2. The amount of released SO2 correlated positively with the total and SO2-bleachable anthocyanin content of wines.

Our results align with previous literature [2,3,4,5] and demonstrate that the HS-PFD method delivers performance comparable to high-end analytical techniques like GC-SCD and GC-MS, but at a significantly lower cost. Future developments and automation possibilities will be discussed.

References

[1] Villanueva, F., Ródenas, M., Ruus, A., Saffell, J., Gabriel, M.F. (2022). Appl. Spectrosc. Rev., 57:7, 531-579.

[2] Jenkins, T.W., Howe, P.A., Sacks, G.L., Waterhouse, A.L. (2020). Am. J. Enol. Vitic., 71, 222–230.

[3] Coelho, J.M., Howe, P.A., Sacks, G.L. (2015). Am. J. Enol. Vitic. 66, 257–265.

[4] Carrascon, V., Ontañón, I., Bueno, M., Ferreira, V. (2017). J. Chromatogr. A, 1504, 27–34.

[5] Layton Ashmore, P., Valdez, F., Harbertson, J.F., Boulton R.B., Collins T.S. (2023). J. Chromatogr. A, 1695, 1-7.

Publication date: June 4, 2025

Type: Poster

Authors

Charles Jean-François Chappuis1,*, Liming Zeng1, Arnaud Pernet1, Eric Grand1, and Benoit Bach1

1 Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Route de duillier 52, 1260 Nyon, Switzerland

Contact the author*

Keywords

sulfur dioxide, headspace analysis, pulsed fluorescence detector, free SO2

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.