terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

The use of pulsed fluorescence detector to quantify free SO2 in wines via the headspace

Abstract

Pulsed fluorescence SO2 analyzers are widely used for atmospheric monitoring [1]. They are accurate, portable, sensitive and their price are reduced compared to advanced techniques like gas chromatography with sulfur chemiluminescence detection (GC-SCD). These instruments also allow for continuous and non-destructive measurements. In this study, we explored the potential of pulsed fluorescence detection to quantify free SO2 in wine via the headspace (HS-PFD) and developed a method to minimize disturbances to SO2 equilibrium.

Our approach involves injecting wine into a syringe, adding nitrogen to create a headspace, and gradually releasing the gas phase into the SO2 analyzer. Molecular SO₂ levels are determined using a calibration curve based on model wine spiked with potassium metabisulfite, while free SO2 is calculated considering temperature, pH, and alcohol by volume (ABV) with the equations described in [2]. The method demonstrated high sensitivity, with detection and quantification limits of 0.012 mg/L and 0.032 mg/L, respectively—equivalent to roughly 0.5 and 1.3 mg/L of free SO2 in a wine with pH 3.5 and 10% ABV. The coefficients of determination of calibration curves ranged from 0.99 to 0.999, and the method’s precision, assessed across 18 wines measured in triplicate, yielded an average relative standard deviation of 3.5% (ranging from 1.2% to 8%).

We analyzed 81 Swiss commercial wines using HS-PFD and corrected iodometric titration (CIT). Results from both methods were comparable for white and rosé wines (white: N = 29, slope = 0.9, R2 = 0.96; rosé: N = 9, slope = 0.98, R2 = 0.95). However, HS-PFD consistently measured lower free SO2 in red wines compared to CIT (N = 43, slope = 0.61, R2 = 0.85). Further analysis of 20 selected wines using CIT, aeration-oxidation (A-O), HS-PFD and acidification-HS-PFD (Acid-HS-PFD) demonstrated that methods acidifying wine samples (CIT, A-O and Acid-HS-PFD) overestimate free SO2 in red wines, as acidification released weakly bound SO2. The amount of released SO2 correlated positively with the total and SO2-bleachable anthocyanin content of wines.

Our results align with previous literature [2,3,4,5] and demonstrate that the HS-PFD method delivers performance comparable to high-end analytical techniques like GC-SCD and GC-MS, but at a significantly lower cost. Future developments and automation possibilities will be discussed.

References

[1] Villanueva, F., Ródenas, M., Ruus, A., Saffell, J., Gabriel, M.F. (2022). Appl. Spectrosc. Rev., 57:7, 531-579.

[2] Jenkins, T.W., Howe, P.A., Sacks, G.L., Waterhouse, A.L. (2020). Am. J. Enol. Vitic., 71, 222–230.

[3] Coelho, J.M., Howe, P.A., Sacks, G.L. (2015). Am. J. Enol. Vitic. 66, 257–265.

[4] Carrascon, V., Ontañón, I., Bueno, M., Ferreira, V. (2017). J. Chromatogr. A, 1504, 27–34.

[5] Layton Ashmore, P., Valdez, F., Harbertson, J.F., Boulton R.B., Collins T.S. (2023). J. Chromatogr. A, 1695, 1-7.

Publication date: June 4, 2025

Type: Poster

Authors

Charles Jean-François Chappuis1,*, Liming Zeng1, Arnaud Pernet1, Eric Grand1, and Benoit Bach1

1 Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Route de duillier 52, 1260 Nyon, Switzerland

Contact the author*

Keywords

sulfur dioxide, headspace analysis, pulsed fluorescence detector, free SO2

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

Determining the impact of thiophenols on ashy flavor recognition in smoke-affected wines

Abstract
Wildfires are an increasing concern for wine-producing regions worldwide, as they generate smoke containing volatile organic compounds that can be transported over long distances and can be absorbed by wine grapes [1].

Mycobiota consortium in wine fermentation

The creation of interspecific hybrid varieties (IHVs) with resistance to diseases such as powdery mildew and downy mildew has made it possible to reduce the use of inputs within vineyards. In this context, IHVs respond to societal demands for minimizing environmental impact and are increasingly being adopted in viticulture [1,2].

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].