terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Assessing the potential of fermentative skin contact in white winemaking on phenolic, colour, and sensory traits

Assessing the potential of fermentative skin contact in white winemaking on phenolic, colour, and sensory traits

Abstract

Fermentative maceration in white wine production, involving extended contact with grape skins and seeds, has gained interest in recent years [1]. The impact of this winemaking technique on wine composition and sensory properties remains underexplored. This study investigates the influence of maceration time on the basic parameters, phenolic composition, colour, and sensory attributes of white wines from two Italian autochthonous varieties, ‘Arneis’ and ‘Erbaluce’. Laboratory-scale fermentations were conducted at 18 °C with maceration lasting 0 (control), 2, 7, and 14 days. After maceration, wines were analysed and subjected to oxygenation via air saturation followed by 1-month storage to evaluate oxygen exposure effects. Phenolic compounds were monitored using spectrophotometric and HPLC analyses, focusing on (+)-catechin, (–)-epicatechin, quercetin, quercetin-3-glucoside, condensed tannins, and polymeric flavanol structure. Wine sensory analysis was performed using the Rate-All-That-Apply (RATA) technique [2].

Wine colour was significantly influenced, with increased absorbance at 420 nm in wines subjected to prolonged maceration and air saturation. Total phenolic content increased with maceration time, as previously found [3], doubling after 2 days and quadrupling after 14 days compared to the control, with no significant variations post-oxygenation. The concentrations of (+)-catechin and (–)-epicatechin increased with maceration, while monomeric flavan-3-ols were not detected in control wines. Wine condensed tannins were found only in 7 and 14-day macerated samples, reaching 513 mg/L in Arneis and 708 mg/L in Erbaluce wines for the longest maceration time tested. Although the mean degree of polymerization (mDP) was unaffected by maceration, galloylation significantly increased in Arneis wines with longer maceration time. At the end of fermentation, free acetaldehyde levels were highest in control wines, decreasing with maceration and further declining after air saturation. Oxygenation notably increased condensed tannins (+20.3% on average) accompanied by a decrease in monomeric flavan-3-ols, thus suggesting the possible formation of polymeric flavanols [4] but no mDP differences were found. Sensory evaluation confirmed that longer maceration increased colour intensity, hue, and astringency, while a decline in white and yellow pulp fruit aroma descriptors was observed. These findings improve the understanding of maceration impact on white wine phenolics and sensory traits, offering insights for optimizing maceration to achieve desired wine profiles.

References

[1] Buican, B. C., Colibaba, L. C., Luchian, C. E., Kallithraka, S., & Cotea, V. V. (2023). Agriculture, 13(9), 1750.

[2] Ares, G., Bruzzone, F., Vidal, L., Cadena, R.S., Giménez, A., Pineau, B., Hunter, D.C., Paisley, A.G., & Jaeger, S.R. (2014). Food Quality and Preference, 36, 87-95.

[3] Aleixandre-Tudo, J. L., Weightman, C., Panzeri, V., Nieuwoudt, H. H., & Du Toit, W. J. (2015). South African Journal of Enology and Viticulture, 36(3), 366-377.

[4] Cucciniello, R., Tomasini, M., Russo, A., Falivene, L., Gambuti, A., & Forino, M. (2023). Food Chemistry, 426, 136556.

Publication date: June 4, 2025

Type: Poster

Authors

Lorenzo Ferrero1,*, Marco Lagori1, Anastasiia Kasianova1, Micaela Boido1, Giorgia Botta1, Beatrice Cordero1, Maria Alessandra Paissoni1,2, Susana Río Segade1,2, Luca Rolle1,2, Simone Giacosa1,2

1 Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2 Centro Interdipartimentale di Ricerca sulla Filiera Viticoltura e Vino (CONViVi), Università degli Studi di Torino, Corso Enotria 2/C, 12051 Alba (CN), Italy

Contact the author*

Keywords

white wine, maceration, oxidation, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance.

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].

Determining the impact of thiophenols on ashy flavor recognition in smoke-affected wines

Abstract
Wildfires are an increasing concern for wine-producing regions worldwide, as they generate smoke containing volatile organic compounds that can be transported over long distances and can be absorbed by wine grapes [1].