terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Abstract

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii [1]. Similarly, Lachancea thermotolerans led to produce Tempranillo wines with lower ethanol content and enhanced wine structure [2]. This study investigated the chemical composition and sensory attributes of Nero d’Avola wines produced by sequential inoculum with T. delbrueckii (TD), Metschnikowia pulcherrima (MP) and L. thermotolerans (LT). Four batches of Nero d’Avola grape were collected in three different areas of Sicily (Palermo, Catania, Caltanissetta) in harvest 2024 and vinified separately. The must fermentation was carried out with sequential inoculum of non-Saccharomyces starter yeasts and S. cerevisiae, the latter being inoculated 48 hours after the non-Saccharomyces strains. Microvinifications with maceration were performed monitoring the microbial population during the alcoholic fermentation (AF), every day up to day 5th, and every two days till the end of AF. Once AF was completed, the experimental wines were racked, stabilized, and bottled. The wines were characterised for general chemical parameters (residual sugars, titratable acidity, acetic acid, malic acid, lactic acid, acetaldehyde, glycerol), flavonoids and anthocyanins, colour index, monomers (vanillin index) and tannins (methylcellulose index). The sensory analysis and the aroma profiles were also assessed. The sugar consumption during the first two days of AF was higher for TD and LT in comparison to MP. As expected, the sugar consumption rate increased when the S. cerevisiae strain was inoculated in all the winemaking conditions adopted. The wines obtained with LT showed the highest amounts of lactic acid as well as, in most of the cases, of acetic acid. Differences of phenolic composition were also revealed with higher content of flavonoids and anthocyanins, and lower content of monomers in wines produced with MP and TD. These wines showed also a higher colour intensity in most of the cases. From the sensory point of view, the descriptors mostly affected by the investigated non-Saccharomyces strains were ‘ripe fruits’ and ‘floral’ for the olfactory sensations, ‘body’ and ‘sour’ for the mouthfeel sensations and ‘floral’ for aftertaste sensations. The study provides further evidences of the impact of non-Saccharomyces yeasts on wine composition and their possible use for the differentiation of the Nero d’Avola style.

Funding

InnoNDA project is funded by Regione Sicilia, PROGRAMMA DI SVILUPPO RURALE SICILIA 2014-2022, SOTTOMISURA 16.1 “Sostegno per la costituzione e la gestione dei gruppi operativi del PEI in materia di produttività e sostenibilità dell’agricoltura”.

References

[1] Hranilovic, A., Albertin, W., Capone, L. D., Gallo A., Grbin, R. P., Danner, L., Bastian, E.P. S., Masneuf-Pomerade, I., Coulon, J., Bely, M., Jiranek, V. (2021). Food Chem., 349, 129015.

[2] Belda, I., Navascués, E., Marquina, D., Santos, A., Calderon, F., Benito, S. (2014). Appl Microbiol. Biotechnol., 99, 1911-1922.

Publication date: June 4, 2025

Type: Poster

Authors

Denis Allieri1, Iklima Odabaşı1, Carmen Cris De Oliveira Nobre Bezerra2, Nicholas Bonacina2, Stefano Ferrari3, Francesca Borghini3, Ileana Vigentini2, Daniela Fracassetti1,*

1 Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy.
2 Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy.
3 ISVEA S.R.L., Via Basilicata Loc. Fosci, 53036 Poggibonsi (SI), Italy.

Contact the author*

Keywords

Nero d’Avola wine, non-Saccharomyces yeasts, fermentation, wine composition

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.